
© 2023 Arm

Amilendra Kodithuwakku (Arm Limited)

EuroLLVM 2023

Arm/AArch64 Embedded Development
with LLD

What's New?

© 2023 Arm

A lightning talk on recent additions to LLD for
embedded development on Arm.

1. Cortex®-M Security Extensions (CMSE)

2. Big Endian support

3 © 2023 Arm

Cortex®-M Security Extensions (CMSE)
A.K.A Armv8-M Security Extensions or Arm TrustZone for Armv8-M

Under CMSE, physical memory is divided into Secure and Non-Secure regions.

A Secure region has a part called a Non-Secure Callable (NSC) region that can be
accessed by Non-Secure memory.

4 © 2023 Arm

Cortex®-M Security Extensions (CMSE)
A CMSE application generally has two parts;
• a secure core
• a non-secure core

The secure core resides in a Secure memory region

The non-secure code resides in a Non-secure memory region

The secure and non-secure cores are developed independent of each other

5 © 2023 Arm

CMSE application development flow

Functions in the Secure core meant to be accessed by the Non-secure core are called
Entry Functions.

The linker creates a Secure Gateway (SG) for each Entry Function.

Entry functions reside in the Secure memory region

Secure Gateways reside in the Non-Secure Callable region.

The linker also outputs a Secure Gateway Import Library (import library), which is a
relocatable file that maps Entry Functions to their corresponding SG addresses.

6 © 2023 Arm

CMSE application development flow

Secure core developers share the import library with non-secure core developers.

Using information in the import library, the linker relocates all calls to the entry
functions in the non-secure core to go through their corresponding secure gateways.

7 © 2023 Arm

CMSE application development flow

8 © 2023 Arm

Big Endian Support for Arm

Endianness is a simple concept, but as a colleague at Arm likes to put it, “it is the most
complicated simple thing in the world”

There are 3 independent things that can be big or little endian:
ELF file metadata (Symbols, Relocations etc)
Instructions
Data

AArch64 has only 1 big endian configuration.
ELF file metadata (Symbols, Relocations etc) is big-endian
Instructions are little-endian
Data is little-endian

Arm has more complicated big-endian configurations.

9 © 2023 Arm

The BE-32 (word-invariant) configuration
Early Arm CPUs (pre Arm-V6) supports a big-endian configuration called BE-32

ELF file metadata (Symbols, Relocations etc) is big-endian
Instructions are big-endian
Data is big-endian

Works only for word-aligned accesses

Arm-V6 introduced unaligned access which made BE-32 insufficient.

BE-8 was introduced as a result.
ELF file metadata (Symbols, Relocations etc) is big-endian
Instructions are big-endian in relocatable objects but little-endian in executables
Data is big-endian

Note : BE-8 is same as BE-32 except for instructions in executables being little-endian.

To avoid an ABI break, the linker changes the endianness of instructions when creating
BE8 executables.

The BE-8 (byte-invariant) configuration

10 © 2023 Arm

BE-32 support in LLD

LLD was developed concentrating more on Linux development, so the Arm backend
implementation assumed little-endian.

For embedded development this assumption is not true.

Adding BE-32 support meant removing assumptions of little-endian.

Although BE-32 is needed only for compatibility with legacy systems, the decision to
support BE-32 was made because that made adding BE-8 support easier

BE8 support in LLD
At a high level the only difference between BE-32 and BE-8 is that for BE-8
• The linker should support the --be8 option which instructs the linker to generate BE-8 executables
• The linker sets the flag EF_ARM_BE8 in the ELF header of BE-8 executables
• The linker reverses the endianness of instructions (but not data)

This is still WIP.

11 © 2023 Arm

CMSE
• Armv8-M Architecture Reference Manual

https://developer.arm.com/documentation/ddi0553/latest/

• Requirements for the Toolchain
https://developer.arm.com/documentation/ecm0359818/latest

• LLD Support (WIP)
https://reviews.llvm.org/D139092

Big-Endian
• Word/Byte invariance

https://exchangetuts.com/types-of-endianness-1639978363148945

• EF_ARM_BE8 in the ELF header of BE-8 executables
https://github.com/ARM-software/abi-aa/blob/main/aaelf32/aaelf32.rst#52elf-header

• LLD BE32 Support (Merged)
https://reviews.llvm.org/D140201
https://reviews.llvm.org/D140202

References

https://developer.arm.com/documentation/ddi0553/latest/
https://developer.arm.com/documentation/ecm0359818/latest
https://reviews.llvm.org/D139092
https://exchangetuts.com/types-of-endianness-1639978363148945
https://github.com/ARM-software/abi-aa/blob/main/aaelf32/aaelf32.rst
https://reviews.llvm.org/D140201
https://reviews.llvm.org/D140202

© 2023 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

© 2023 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

	Slide 1: Arm/AArch64 Embedded Development with LLD What's New?
	Slide 2: A lightning talk on recent additions to LLD for embedded development on Arm.
	Slide 3: Cortex®-M Security Extensions (CMSE)
	Slide 4: Cortex®-M Security Extensions (CMSE)
	Slide 5: CMSE application development flow
	Slide 6: CMSE application development flow
	Slide 7: CMSE application development flow
	Slide 8: Big Endian Support for Arm
	Slide 9: The BE-32 (word-invariant) configuration
	Slide 10: BE-32 support in LLD
	Slide 11: References
	Slide 12
	Slide 13

