
inesc-id.pt

INESC-ID – Instituto de Engenharia de Sistemas e Computadores – Investigação e Desenvolvimento em Lisboa / inesc-id.pt This work was partially supported by Google and national funds through FCT, Fundação para a Ciência e a Tecnologia, under project UIDB/50021/2020.

Automatic Translation of C++ to Rust
2. GOAL
• Implement a source-to-source compiler

that automatically converts a specific
subset of modern C++ code to safe
Rust.

• Reduce the potential for security
vulnerabilities while preserving
performance and efficiency.

1. Intro
• Memory safety bugs are a critical class of software security

vulnerabilities, responsible for 70% of security vulnerabilities in
major Microsoft and Google projects.

• C and C++, while not memory-safe, are commonly used to build
complex and critical systems software due to their efficiency.

• On the other hand, Rust is a memory-safe programming language
that offers comparable performance to C and C++.

• Fully rewriting older software systems in Rust is not practical.

5. Approach

HENRIQUE PRETO, NUNO LOPES

70% of serious security bugs in Chrome are memory safety bugs

SECURITY-RELATED 7,1%

OTHER 23,9%

OTHER MEMORY
UNSAFETY 32,9%

36,1%
USE-AFTER-FREE

• This work proposes a two-step translation approach.

• First, C++ code is converted into a safe reference-counted Rust version,
which dynamically checks lifetimes and borrow rules.

• In other words, the transpiler shifts Rust's borrow checking mechanism from
compile-time to run-time, which may result in a performance cost.

• In the end, a static analysis will be performed to refactor the translated code into
a more idiomatic and optimised Rust version, when possible to statically
prove memory safety.

C/C++ Safe RustTRANSPILER
(Clang LibTooling)

Source-to-source
OPTIMIZER Optimized Rust

4. Why doesn’t naive translation work?

• Since C++ is not memory-safe like Rust, a naive translation
is not possible.

• Unlike Rust, C++ does not have strict rules governing the
ownership of memory, lifetimes, and mutability of
references at compile-time, which can lead to memory
safety bugs and undefined behaviour.

• Moreover, even memory-safe programs in C++ may not
compile in Rust if a naive conversion is followed.

A two-step approach for converting C++ code into Rust

Transpile C++ code into a reference-counted Rust version Refactor the Rust code after validating the lifetime of references Refactor the Rust code after proving the
exclusivity of mutable references

3. C2Rust
• State-of-the-art approaches generate unsafe Rust.

• For example, unsafe pointers in C are converted to unsafe
pointers in Rust.

• There is still a question of how to convert unsafe references in
C++ to safe references in Rust.

A dangling pointer in a C program Unsafe C2Rust translation

A valid and memory-safe C++ program An invalid Rust program with multiple mutable references

