‘III...
L 2

*

HENRIQUE PRETO, NUNO LOPES

TECNICO
LISBOA

iInesc-id.pt

inescid

DEFINING TECHNOLOGY

Automatic Translation of C++ to Rust

. ™
1. Intro

 Memory safety bugs are a critical class of software security
vulnerabilities, responsible for 70% of security vulnerabilities in SECURITY-RELATED
major Microsoft and Google projects.

USE-AFTER-FREE
OTHER

« C and C++, while not memory-safe, are commonly used to build
complex and critical systems software due to their efficiency.

* On the other hand, Rust is a memory-safe programming language OTHER MEMORY
that offers comparable performance to C and C++. UNSAFETY

« Fully rewriting older software systems in Rust is not practical.

70% of serious security bugs in Chrome are memory safety bugs

o /

* Implement a source-to-source compiler

that automatically converts a specific
subset of modern C++ code to safe
Rust.

» Reduce the potential for security
vulnerabilities while preserving
performance and efficiency.

-
3. C2Rust

« State-of-the-art approaches generate unsafe Rust. int x = 0;

int *p = &x;

 For example, unsafe pointers in C are converted to unsafe if (p) A
pointers in Rust. int y = 1;
 There is still a question of how to convert unsafe references in } P = &y
C++ to safe references in Rust. .
1nt z = *p,
return O;
¥ t

A dangling pointer in a C program

o

int main() { unsafe fn main 0() -> libc::c_int {

let mut x = 0 as 1libc::c_int;
let mut p: *mut libc::c_int = &mut x;
if !'p.is_null() {
let mut y = 1 as libc::c_int;
p = &mut y;
}
let mut z = *p;
return 0 as libc::c_int;

Unsafe C2Rust translation

4 N
, | |
4. Why doesn’t naive translation work?
« Since C++ is not memory-safe like Rust, a naive translation int arr[] = {0, 1}; let mut arr: [i32; 2] = [0, 1];
is not possible. int &first = arr[0]; let first: &mut i32 = &mut arr[0];
1] = 0; 1] = 0;
* Unlike Rust, C++ does not have strict rules governing the :Fr [t] _ 1. :;?[1 = 1. le—t4 /
ownership of memory, lifetimes, and mutability of st = 4 LISt = 5 compreemtime error.
references at compile-time, which can lead to memory
safety bugs and undefined behaviour.
) More(.)ve.r’ even m emo.ry-safe programs in C++ may not A valid and memory-safe C++ program An invalid Rust program with multiple mutable references
compile in Rust if a naive conversion is followed.
N : /

L 4
“IIIIllllIIIIIIIIIIIIIIIIIIIIIllllIII‘

p
5. Approach

* This work proposes a two-step translation approach.

TRANSPILER

 In other words, the transpiler shifts Rust's borrow checking mechanism from
compile-time to run-time, which may result in a performance cost.

* In the end, a static analysis will be performed to refactor the translated code into
a more idiomatic and optimised Rust version, when possible to statically
prove memory safety.

L 4

let arr: Rc<RefCell<[Rc<RefCell<i32>>; 2]>> = Rc::new(RefCell: :new(let arr: RefCell<[RefCell<i32>; 2]> = RefCell: :new(
[Rc: :new(RefCell: :new(0)), Rc::new(RefCell::new(1))])); [RefCell: :new(0), RefCell::new(1)]);
let first: Weak<RefCell<i32>> = Rc::downgrade (& (*arr.borrow()) [0]); let first: &RefCell<i32> = &arr.borrow() [0];
*(*arr.borrow()) [1] .borrow_mut() = 0; *arr.borrow() [1] .borrow_mut() = 0;
*first.upgrade() .expect ("err") .borrow_mut() = 1; *first.borrow_mut() = 0;
apunn ’ Transpile C++ code into a reference-counted Rust version Refactor the Rust code after validating the lifetime of references

o

- First, C++ code is converted into a safe reference-counted Rust version, “ SPILE m Source-to-source __ ISNCHISIRINER
which dynamically checks lifetimes and borrow rules. (CGlang LibTooling) OPTIMIZER

A two-step approach for converting C++ code into Rust

let arr: [RefCell<i32>; 2] =

[RefCell: :new(0), RefCell: :new(1)];
let first: &RefCell<i32> = &arr[0];
*arr[1] .borrow_mut() = 0;
*first.borrow_mut() = 1;

Refactor the Rust code after proving the
exclusivity of mutable references

/

INESC-ID — Instituto de Engenharia de Sistemas e Computadores — Investigagao e Desenvolvimento em Lisboa / inesc-id.pt This work was partially supported by Google and national funds through FCT, Fundacao para a Ciéncia e a Tecnologia, under project UIDB/50021/2020.

