
Performance Impact of Exploiting
Undefined Behavior in C/C++

*Lucian I. Popescu, **Nuno P. Lopes
*Facultatea de Automatica s, i Calculatoare,

Universitatea Politehnică din Bucures, ti
** Instituto Superior Técnico,

Universidade de Lisboa
*lucian.popescu187@gmail.com, **nuno.lopes@tecnico.ulisboa.pt

1. Introduction

Clang and LLVM use undefined behavior (UB) to issue code
optimizations. Currently, there is no study that evaluates
the performance impact of this class of optimizations. We
fill this gap by presenting some early results in this area.
Phoronix Test Suite was used to evaluate the performance
of a diverse set of applications, including webservers, com-
pression algorithms, graphical environments, etc. By com-
piling each application with flags that trigger specific UBs,
we gathered various metrics (requests per second, MB/s,
FPS, etc) for further analysis.

2. Impact

Early results show that in nearly 90% of the cases the per-
formance impact is insignificant (between -2% and 2%).

3. Experiment Setup

The performance tests were run on a machine with the fol-
lowing specs:
• Processor: 2 x Intel Xeon E5-2680 v2 @ 3.60GHz (20
Cores / 40 Threads), MicroArch: IvyBridge

• OS: Debian 11, kernel: 5.10.0-21-amd64 (x86_64)
• Compiler: Clang 15.0.7

The experiments were conducted using the following steps:
• Compile the benchmark with no UB flags enabled (base-
line)

• Compile the benchmark using one UB flag at a time
• Run baseline using Phoronix and fetch the results
• Run the benchmarks with UB flags using Phoronix and
fetch the results

• Compare the UB flags benchmark results with the base-
line

4. Undefined Behavior Flags

Flag name Flag Description
Existing Flags
-fwrapv Treat signed integer overflow as two’s

complement. Drops ‘nsw’ from IR.
-fno-strict-aliasing Don’t use type-based alias analysis.

Drops ‘!tbaa’ from IR.
-fstrict-enums Enable optimizations that take advan-

tage of enum’s value ranges. Adds
‘!range’ from IR.

-fno-delete-null-
pointer-checks

Assume that programs can safely
dereference null pointers.

-fno-finite-loops Don’t assume that all loops are finite.
‘!mustprogress’ is not added to any
loop or function.

Flags Added by Us
-fconstrain-shift-
value

Mask shift RHS so it doesn’t produce
poison when RHS >= bitwidth.

-fno-constrain-bool-
value

Do not constrain bool values in {0,1}.
Drops ‘!range’ from IR.

-fno-use-default-
alignment

Use alignment of 1 for all memory op-
erations including load, store, memcpy,
etc. Global variables and alloca’s re-
main unaffected.

TODO Flags
Change uninitialized loads from undef
to zero .
Don’t treat out-of-bounds memory ac-
cesses as UB.
Don’t treat use-after-free accesses as
UB.
Don’t use object-based rules in alias
analysis (use an aassembly-like mem-
ory mode).
Remove arithmetic-related UBs (divi-
sion by 0, etc).

-fwrapv
Out of 162 data points, 83% values are in the interval of
[−2, 2], 6% exhibit positive performance impact and 11%
exhibit negative performance impact. This flag has the
biggest overall negative performance impact, as presented
in Figure 2.

Figure 1: CDF of performance impact for -fwrapv

Other benchmarks with negative impact: FFTW - Float
+ SSE - Size: 1D FFT Size 256, uvg266 (Video En-
coder). Other benchmarks with positive impact: OpenSSL
- RSA4096.

Figure 2: eSpeak-NG Speech Engine - Text-To-Speech
Synthesis, Baseline: 41.59 Sec

-fno-strict-aliasing
Out of 162 data points, 88.8% values are in the interval of
[−2, 2], 3% exhibit positive performance impact and 8.2%
exhibit negative performance impact. This is the most bal-
anced flag up until this moment.

Figure 3: CDF of performance impact for fno-strict-aliasing

-fconstrain-shift-value
Out of 161 data points, 88.8% values are in the interval
of [−2, 2], 8.1% exhibit positive performance impact and
3.1% exhibit negative performance impact. This flag has
the biggest overall positive performance impact, as pre-
sented in Figure 5.

Figure 4: CDF of performance impact for -fconstrain-shift-
value

Other benchmarks with negative impact: GraphicsMagick
- Operation: Swirl, PJSIP - Method: OPTIONS Stateful.
Other benchmarks with positive impact: OpenSSL - AES-
256-GCM.

Figure 5: GtkPerf - GTK Widget: GtkDrawingArea -
Pixbufs, Baseline: 170.08 Sec

-fno-use-default-alignment
Out of 158 data points, 85.5% values are in the interval of
[−2, 2], 10.5% exhibit positive performance impact and 4%
exhibit negative performance impact. For this flag we ex-
pected the negative impact to be greater than the positive
impact.

Figure 6: CDF of performance impact for -fno-use-default-
alignment

5. Future work

• Implement and benchmark other classes of UB.

• Run the benchmarks on different hardware architectures
(AMD, ARM).

• Combine the flags when compiling the benchmarks.

• Find a method of discovering new UBs (maybe using
Alive2).

• Run the benchmarks taking into account LTO and PGO.

EuroLLVM 23, 10-11th May 2023, Glasgow, Scotland

