
▸ Most security vulnerabilities today are related with memory safety.

▸ Some languages, namely the C++ programming language, are not memory-safe.

▸ One solution is to use a memory-safe language instead: Rust.

▸ There are two kinds of memory errors:

Static Analysis for C++ Rust-Like
Lifetime Annotations
Susana Monteiro, Nuno Lopes

This work was partially supported by Google and national funds through FCT,
Fundação para a Ciência e a Tecnologia, under project UIDB/50021/2020.

▸ Lifetime: the scope for which a reference is alive.

▸ Each reference has a lifetime.

▸ Statically ensure that references are valid, preventing temporal memory errors.

▸ Developers can add lifetime annotations to the code.

fn smallest<'a>(x: &'a str, y: &'a str) -> &'a str {

 if x.len() < y.len() {

 x

 } else {

 y

 }

}

▸ Rust-like lifetime annotations were recently implemented in Clang.

▸ The function smallest, written previously in Rust, can be written in C++, with the

respective lifetimes annotations $a.

const std::string& $a smallest(

 const std::string& $a s1, const std::string& $a s2) {

 if (s1.length() < s2.length()) {

 return s1;

 } else {

 return s2;

 }

}

▸ Translating C++ code to Rust has to be done incrementally, which requires

interoperability between these languages.

▸ This interoperability brings up some challenges, such as Rust’s concept of lifetimes.

fn first_char<'a>(s: &'a str) -> &'a str {

 &s[0];

}

▸ Rust-like lifetimes annotations were recently implemented in Clang as an extension to

C++ and these can be used to solve the above challenge.

▸ Constraint: the return value should be valid as long as the function’s arguments are.

▸ The verification of lifetime annotations in Rust is flow-insensitive.

▸ We are developing a static analyzer.

▸ Goal: check if Rust-like lifetimes annotations in C++ code are correct.

▸ The tool is being developed in Clang, using its static analysis capabilities.

▸ The analysis is flow-insensitive and intra-procedural.

Implementation

The analysis is divided into 3 steps.

Here we show the steps to analyze the previous example.

Step 1: create a graph of dependencies between variables with no lifetime annotation.

x -> p

y -> x

Step 2: propagate the dependencies until there are no more changes.

x -> p

y -> x, p

Step 3: check if the code is valid and generate the necessary warnings.

▸ Returning objects created inside of a function.

▸ Pointer aliasing.

▸ Rust’s concept of ownership.

int *$b fn(int *$a p) {

int *x = p;

int *y = x;

 return y;

}

fn f<'a, 'b>(x: &'a i32, y: &'b i32, b: bool) -> &'a i32 {

 let mut p = x;

 if b {

 return p;

 }

 p = y;

 x

}

error: return p;

Background

Rust and Lifetimes

Lifetime Annotations in C++

Static Analyzer

Next steps

^ function was supposed to return data with lifetime `'a`
but it is returning data with lifetime `'b`

example.cpp:2:9: warning: function should return data with lifetime

'$b' but it is returning data with lifetime '$a'

 return p;

        ~~~~~~~^

example.cpp:1:20: note: declared with lifetime '$a' here

int *$b fn(int *$a p) {

           ~~~~~~~~^

returns a reference with
the same lifetime ('a)

as the parameters

overrides previous
value of p

Region of memory

Old
Object

Region of memory

Memory
access

Object

Unallocated

Allocated

Freed

Memory
access

TEMPORALSPATIAL

▸ Bounds of objects

▸ Rust enforces it at run time

▸ Lifetime of objects

▸ Rust enforces it at compile time

