
Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Tensor Evolution
Javed Absar, Principal Engineer

Muthu M. Basakaran, Principal Engineer

UK Reservoir Labs R&D

Qualcomm Technologies International, Ltd.

https://people.qualcomm.com/People?query=Qualcomm+Technologies+International%2C+Ltd.&field=affiliation&match=eq&types=1&types=2&types=5&types=7&types=40&sort=cn&sav=0

Tensor Evolution

• Extension of LLVM Scalar Evolution (SCEV) for Tensors
• Analysis and Optimization Technique

• Tensors are
• multi-dimensional arrays

• fundamental to Machine Learning models

Scalar Evolution (SCEV)

“Scalar Evolution is an LLVM analysis that is used to analyze, categorize and simplify expressions in loops.
Many optimizations such as - generalized loop-strength-reduction, parallelization by induction variable
(vectorization), and loop-invariant expression elimination - rely on SCEV analysis.
However, SCEV is also a complex topic.”

-- some Large Language Model

Scalar Evolution

• SCEV analysis and opt

Tensor Evolution – Motivating Example 1

PyTorch code.
a and x are tensors
def forward(self, a, x):
for _ in range(15):
x = a + x

return x

PyTorch code.
a and x are tensors
def forward(self, a, x):
return 15*a+x

• Tensor Evolution Optimization

Mathematical Formulation

• Basic Recurrence (Tensor Evolution)
• a constant or loop-invariant tensor Tc

• a function τ1 over natural number N that produces tensor of same shape as Tc

• an element-wise operator + associative and commutative

• τ defined as function τ (i) over N

τ = { Tc, +, τ1 } eq. 1

{Tc, +, τ1}(i) = Tc + τ1(0) + τ1(1)... + τ1(i − 1) eq. 2

Mathematical Formulation

• Chain of Recurrences (Tensor Evolution)
• loop-invariant tensors Tc0 , Tc1 , Tc2 , ..., Tci−1 ;
• function τk defined over N,
• operators ⊙1, ⊙2, ..., ⊙k,
• chain of evolution of tensor value represented by tuple

• Note: Operators could be same or different (+,-, *, tanh).

• Recurrences
• Algebraic properties
• Computationally reducible at any iteration point

τ = {Tc0 , ⊙1, Tc1 , ⊙2, ..., ⊙k, τk} eq. 1

τ (i) = {Tc0 , ⊙1, {Tc1 , ⊙2, ..., ⊙k, τk}}(i) eq. 2

Tensor Evolution

• Lemmas – Rewrite Rules

• Used for building TEV ‘available’ expressions and simplifications

operator TEV expression rewrite rule

slice slice({A, +, τ}) {slice(A), +, slice(τ)}

slice({A, *, τ}) {slice(A), *, slice(τ)}

reshape reshape({A, ⊙, τ}) {reshape(A), ⊙, reshape(τ)}

concat concat({A, ⊙, τ1},{B, ⊙, τ2}) {concat(A,B), ⊙, concat(τ1, τ2)}

add K K + {A, +, τ} {K+A, +, τ}

add TEVs {A, +, τ1} + {B, +, τ2} {A+B, +, τ1+τ2}

mul K * {A, +, τ} {K*A, +, K*τ}

inject TEV {A, +, {B, +, τ}} {A, +, B, +, τ}

Tensor Evolution – Basic Recurrence

loop-exit

Xinitial= A

K +

X

Xfinal

loop invariant

loop-header

X = {A, +, K}

loop-exit

Xinitial= A

K *

X

Xfinal

loop invariant

loop-header

X = {A, *, K}

Tensor Evolution

• Lemma: Add a constant (LIV) tensor

K

loop invariant

loop-exit

loop-header

+
{K+A, +, τ}

{A, +, τ}

Tensor Evolution

• Lemma: Add two TEVs

loop-exit

loop-header

{A, +, τ1}

+
{A+B, +, τ1+τ2}

{B, +, τ2}

Tensor Evolution

• Lemma: TEV inject into TEV

loop-exit

loop-header

{B, +, τ}

+

Xinitial= A

Xfinal

X = {A, +, B,+, τ}

chain of recurrences

Tensor Evolution

• Lemma: Slice

loop-exit

loop-header

slice

{slice(A), ⊙, slice(τ)}

{A, ⊙, τ}

Tensor Evolution

• Lemma: Reshape

loop-exit

loop-header

reshape

{reshape(A), ⊙, reshape(τ)}

{A, ⊙, τ}

Tensor Evolution

• Lemma: Concat

loop-exit

loop-header

concat

{concat(A,B), ⊙, concat(τ1, τ2)}

{B, ⊙, τ2}

{A, ⊙, τ1}

Tensor Evolution

• Lemmas – Rewrite Rules

• Used for building TEV expressions and simplifications

operator TEV expression rewrite rule

slice slice({A, +, τ}) {slice(A), +, slice(τ)}

slice({A, *, τ}) {slice(A), *, slice(τ)}

reshape reshape({A, ⊙, τ}) {reshape(A), ⊙, reshape(τ)}

concat concat({A, ⊙, τ1},{B, ⊙, τ2}) {concat(A,B), ⊙, concat(τ1, τ2)}

add K K + {A, +, τ} {K+A, +, τ}

add TEVs {A, +, τ1} + {B, +, τ2} {A+B, +, τ1+τ2}

mul K * {A, +, τ} {K*A, +, K*τ}

inject TEV {A, +, {B, +, τ}} {A, +, B, +, τ}

TEV Pass - Analysis

loop-exit

loop-header

TEVbasic

Xfinal Yfinal scan output
loop-exit

loop-header

Xfinal Yfinal scan output

TEVderived

TEVunknown

TEVunknown

TEVunknown

TEV Analysis Pass

+ +

* *

.

.

.

.

.

.

TEV Pass - Opt

loop-exit

loop-header

{X0, +, A}

+

Yinitial= Y0

Yfinal

Evaluation of Yk

Yk = {Y0, +, S({X0, +, A})}k

➔ Yk = {Y0, +, S({X0, +, A})}k

➔ Yk = {Y0, +, {S(X0), +, S(A)}}k

➔ Yk = {Y0, +, S(X0), +, S(A)}k

➔ Yk = Y0 + k*S(X0)+ k*(k+1)/2*S(A)

+

Xinitial= X0

A

loop invariant

slice

{Y0, +, slice({X0, +, A})}

slice({X0, +, A})

PyTorch code.
def forward(self, a, x, y):
for _ in range(15):

x = x + a
…
z = x[1,:]
y = y + z

return y

TEV Pass - Opt
Evaluation of Yk

Yk = {Y0, +, S({X0, +, A})}k

➔ Yk = {Y0, +, S({X0, +, A})}k

➔ Yk = {Y0, +, {S(X0), +, S(A)}}k

➔ Yk = {Y0, +, S(X0), +, S(A)}k

➔ Yk = Y0 + k*S(X0)+ k*(k+1)/2*S(A)

PyTorch code.
def forward(self, a, x, y):
for _ in range(15):

x = x + a
…
z = x[1,:]
y = y + z

return y

PyTorch code.
def forward(self, a, x, y):
return y + 15*x[1,:] + 15*(15+1)/2*a[1,:]

Conclusion

• TEV is extension of SCEV to Tensors

• Construction of TEV expressions and rewrite-lemmas
• Complex optimizations on top of TEV (much like SCEV LSR etc)

• Prototyped in internal-compiler

• Potential opt for MLIR lower CFG dialects
• Looking forward to collaboration and discussions

Follow us on:

For more information, visit us at:

qualcomm.com & qualcomm.com/blog

Thank you
Nothing in these materials is an offer to sell any of the components
or devices referenced herein.

©2018-2023 Qualcomm Technologies, Inc. and/or its affiliated
companies. All Rights Reserved.

Qualcomm is a trademark or registered trademark of Qualcomm
Incorporated. Other products and brand names may be trademarks
or registered trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm Incorporated,
Qualcomm Technologies, Inc., and/or other subsidiaries or business units within
the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes our
licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm
Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its
subsidiaries, substantially all of our engineering, research and development functions, and
substantially all of our products and services businesses, including our QCT semiconductor
business.

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc.
and/or its subsidiaries. Qualcomm patented technologies are licensed by Qualcomm
Incorporated.

	Usage Guidelines
	Slide 1: Tensor Evolution
	Slide 2: Tensor Evolution
	Slide 3: Scalar Evolution (SCEV)
	Slide 4: Scalar Evolution
	Slide 5: Tensor Evolution – Motivating Example 1
	Slide 6: Mathematical Formulation
	Slide 7: Mathematical Formulation
	Slide 8: Tensor Evolution
	Slide 9: Tensor Evolution – Basic Recurrence
	Slide 10: Tensor Evolution
	Slide 11: Tensor Evolution
	Slide 12: Tensor Evolution
	Slide 13: Tensor Evolution
	Slide 14: Tensor Evolution
	Slide 15: Tensor Evolution
	Slide 16: Tensor Evolution
	Slide 17: TEV Pass - Analysis
	Slide 18: TEV Pass - Opt
	Slide 19: TEV Pass - Opt
	Slide 20: Conclusion
	Slide 21

