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Tensor Evolution

• Extension of LLVM Scalar Evolution (SCEV) for Tensors
• Analysis and Optimization Technique

• Tensors are 
• multi-dimensional arrays

• fundamental to Machine Learning models



Scalar Evolution (SCEV)

“Scalar Evolution is an LLVM analysis that is used to analyze, categorize and simplify expressions in loops.
Many optimizations such as - generalized loop-strength-reduction, parallelization by induction variable 
(vectorization), and loop-invariant expression elimination - rely on SCEV analysis. 
However, SCEV is also a complex topic.”

-- some Large Language Model



Scalar Evolution

• SCEV  analysis and opt



Tensor Evolution – Motivating Example 1

# PyTorch code.
# a and x are tensors
def forward(self, a, x):
for _ in range(15):
x = a + x

return x

# PyTorch code.
# a and x are tensors
def forward(self, a, x):
return 15*a+x

• Tensor Evolution Optimization



Mathematical Formulation

• Basic Recurrence (Tensor Evolution)
• a constant or loop-invariant tensor Tc

• a function τ1 over natural number N that produces tensor of same shape as Tc

• an element-wise operator +  associative and commutative

• τ defined as function τ (i) over N

τ = { Tc, +, τ1 } eq. 1

{Tc, +, τ1}(i) = Tc + τ1(0) + τ1(1)... + τ1(i − 1)                   eq. 2



Mathematical Formulation

• Chain of Recurrences (Tensor Evolution)
• loop-invariant tensors Tc0 , Tc1 , Tc2 , ..., Tci−1 ; 
• function τk defined over N, 
• operators ⊙1, ⊙2, ..., ⊙k,
• chain of evolution of tensor value represented by tuple

• Note: Operators could be same or different (+,-, *, tanh).

• Recurrences
• Algebraic properties
• Computationally reducible at any iteration point

τ = {Tc0 , ⊙1, Tc1 , ⊙2, ..., ⊙k, τk}                                  eq. 1

τ (i) = {Tc0 , ⊙1, {Tc1 , ⊙2, ..., ⊙k, τk}}(i)                        eq. 2



Tensor Evolution

• Lemmas – Rewrite Rules

• Used for building TEV ‘available’ expressions and simplifications

operator TEV expression rewrite rule

slice slice({A, +, τ}) {slice(A), +, slice(τ)}

slice({A, *, τ}) {slice(A), *, slice(τ)}

reshape reshape({A, ⊙, τ}) {reshape(A), ⊙, reshape(τ)}

concat concat({A, ⊙, τ1},{B, ⊙, τ2})  {concat(A,B), ⊙, concat(τ1, τ2)}

add K K + {A, +, τ} {K+A, +, τ}

add TEVs {A, +, τ1} + {B, +, τ2} {A+B, +, τ1+τ2}

mul K * {A, +, τ} {K*A, +, K*τ}

inject TEV {A, +, {B, +, τ}} {A, +, B, +, τ}



Tensor Evolution – Basic Recurrence

loop-exit

Xinitial= A

K +

X

Xfinal

loop invariant

loop-header

X = {A, +, K}

loop-exit

Xinitial= A

K *

X

Xfinal

loop invariant

loop-header

X = {A, *, K}



Tensor Evolution

• Lemma: Add a constant (LIV) tensor

K

loop invariant

loop-exit

loop-header

+
{K+A, +, τ}

{A, +, τ}



Tensor Evolution

• Lemma: Add two TEVs

loop-exit

loop-header

{A, +, τ1}

+
{A+B, +, τ1+τ2}

{B, +, τ2}



Tensor Evolution

• Lemma: TEV inject into TEV

loop-exit

loop-header

{B, +, τ}

+

Xinitial= A

Xfinal

X = {A, +, B,+, τ}

chain of recurrences



Tensor Evolution

• Lemma: Slice

loop-exit

loop-header

slice

{slice(A), ⊙, slice(τ)}

{A, ⊙, τ}



Tensor Evolution

• Lemma: Reshape

loop-exit

loop-header

reshape

{reshape(A), ⊙, reshape(τ)}

{A, ⊙, τ}



Tensor Evolution

• Lemma: Concat

loop-exit

loop-header

concat

{concat(A,B), ⊙, concat(τ1, τ2)}

{B, ⊙, τ2}

{A, ⊙, τ1}



Tensor Evolution

• Lemmas – Rewrite Rules

• Used for building TEV expressions and simplifications

operator TEV expression rewrite rule

slice slice({A, +, τ}) {slice(A), +, slice(τ)}

slice({A, *, τ}) {slice(A), *, slice(τ)}

reshape reshape({A, ⊙, τ}) {reshape(A), ⊙, reshape(τ)}

concat concat({A, ⊙, τ1},{B, ⊙, τ2})  {concat(A,B), ⊙, concat(τ1, τ2)}

add K K + {A, +, τ} {K+A, +, τ}

add TEVs {A, +, τ1} + {B, +, τ2} {A+B, +, τ1+τ2}

mul K * {A, +, τ} {K*A, +, K*τ}

inject TEV {A, +, {B, +, τ}} {A, +, B, +, τ}



TEV Pass - Analysis

loop-exit

loop-header

TEVbasic

Xfinal Yfinal scan output
loop-exit

loop-header

Xfinal Yfinal scan output

TEVderived

TEVunknown

TEVunknown

TEVunknown

TEV Analysis Pass
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TEV Pass - Opt

loop-exit

loop-header

{X0, +, A}

+

Yinitial= Y0

Yfinal

Evaluation of Yk

Yk = {Y0, +, S({X0, +, A})}k

➔ Yk = {Y0, +, S({X0, +, A})}k

➔ Yk = {Y0, +, {S(X0), +, S(A)}}k

➔ Yk = {Y0, +, S(X0), +, S(A)}k

➔ Yk = Y0 + k*S(X0)+ k*(k+1)/2*S(A)

+

Xinitial= X0

A

loop invariant

slice

{Y0, +, slice({X0, +, A})}

slice({X0, +, A})

# PyTorch code.
def forward(self, a, x, y):
for _ in range(15):

x = x + a
…
z = x[1,:]
y = y + z

return y



TEV Pass - Opt
Evaluation of Yk

Yk = {Y0, +, S({X0, +, A})}k

➔ Yk = {Y0, +, S({X0, +, A})}k

➔ Yk = {Y0, +, {S(X0), +, S(A)}}k

➔ Yk = {Y0, +, S(X0), +, S(A)}k

➔ Yk = Y0 + k*S(X0)+ k*(k+1)/2*S(A)

# PyTorch code.
def forward(self, a, x, y):
for _ in range(15):

x = x + a
…
z = x[1,:]
y = y + z

return y

# PyTorch code.
def forward(self, a, x, y):
return y + 15*x[1,:] + 15*(15+1)/2*a[1,:]



Conclusion

• TEV is extension of SCEV to Tensors

• Construction of TEV expressions and rewrite-lemmas
• Complex optimizations on top of TEV (much like SCEV LSR etc)

• Prototyped in internal-compiler

• Potential opt for MLIR lower CFG dialects
• Looking forward to collaboration and discussions
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