
OpenMP as GPU Kernel Language
Progress Report

Johannes Doerfert <jdoerfert@llnl.gov>
Tom Scogland <scogland1@llnl.gov>

Prepared by LLNL under Contract DE-AC52-07NA27344.

mailto:jdoerfert@llnl.gov

Offload Style

int i = blockId.x;
if (i >= N) return;
int j = threadId.x;
if (j >= M) return;
body1(i, j);
__syncthreads();
body2(i, j);
}

Offload Style

int i = blockId.x;
if (i >= N) return;
int j = threadId.x;
if (j >= M) return;
body1(i, j);
__syncthreads();
body2(i, j);
}

#pragma omp target teams distribute
for (int i = ...) {
 #pragma omp parallel for
 for (int j = ...)
 body1(i, j);
 #pragma omp parallel for
 for (int j = ...)
 body2(i, j);
}

Offload Style

int i = blockId.x;
if (i >= N) return;
int j = threadId.x;
if (j >= M) return;
body1(i, j);
__syncthreads();
body2(i, j);
}

#pragma omp target loop
for (int i = ...) {
 #pragma omp loop
 for (int j = ...)
 body1(i, j);
 #pragma omp loop
 for (int j = ...)
 body2(i, j);
}

OpenMP Kernel Language

libompx — Host Wrappers

libompx — Device Wrappers

[1/2] CUDA Syntax

kern<<<nblocks, nthreads, shmem>>>(a1, a2)

#pragma omp target teams num_teams(nblocks) thread_limit(nthreads) \
 ompx_cgroup_dyn_mem(shmem) ompx_kernel
kern(a1, a2)

[2/2] CUDA Syntax

__device__ void foo();

void foo();
#pragma omp declare target device_type(nohost) to(foo)

[2/2] CUDA Syntax

__device__ void foo();

[[ompx::declare_target(device_type(nohost))]] void foo();

CUDA via LLVM/OpenMP

LLVM/OpenMP as Target Independent Runtime Layer

Breaking the Vendor Lock — Performance Portable Programming Through OpenMP as
Target Independent Runtime Layer (PACT’22)

LLVM/OpenMP as Target Independent Runtime Layer

Breaking the Vendor Lock — Performance Portable Programming Through OpenMP as
Target Independent Runtime Layer (PACT’22)

Questions?

OpenMP as Intermediate Layer

LLVM/OpenMP Target Offloading

● OpenMP offload code compilation for CPUs,
virtual GPU (VGPU), AMD and NVIDIA GPUs

LLVM/OpenMP Target Offloading

● OpenMP offload code compilation for CPUs,
virtual GPU (VGPU), AMD and NVIDIA GPUs

● Intel GPU support is WIP

LLVM/OpenMP Target Offloading + Math Runtimes

● OpenMP offload code compilation for CPUs,
virtual GPU (VGPU), AMD and NVIDIA GPUs

● Intel GPU support is WIP

● Target independent math library (libm.a) for all
supported architectures. Defines sin(...), etc.

LLVM/OpenMP Target Offloading + CUDA Device Compilation

● OpenMP offload code compilation for CPUs,
virtual GPU (VGPU), AMD and NVIDIA GPUs

● Intel GPU support is WIP

● Target independent math library (libm.a) for all
supported architectures. Defines sin(...), etc.

● CUDA device code interoperability with OpenMP
target. Link in CUDA device runtimes e.g., Thrust.

LLVM/OpenMP as Target Independent Runtime Layer (for CUDA)

● OpenMP offload code compilation for CPUs,
virtual GPU (VGPU), AMD and NVIDIA GPUs

● Intel GPU support is WIP

● Target independent math library (libm.a) for all
supported architectures. Defines sin(...), etc.

● CUDA device code interoperability with OpenMP
target. Link in CUDA device runtimes e.g., Thrust.

● Define CUDA API and builtins through OpenMP
runtime functions. Allow to retarget CUDA codes.

LLVM/OpenMP as Target Independent Runtime Layer (WIP)

● OpenMP offload code compilation for CPUs,
virtual GPU (VGPU), AMD and NVIDIA GPUs

● Intel GPU support is WIP

● Target independent math library (libm.a) for all
supported architectures. Defines sin(...), etc.

● CUDA device code interoperability with OpenMP
target. Link in CUDA device runtimes e.g., Thrust.

● Define CUDA API and builtins through OpenMP
runtime functions. Allow to retarget CUDA codes.

● HIP, SYCL, and other languages can be added as
needed. Full interoperability and portability.

LLVM/OpenMP as Target Independent Runtime Layer (WIP)

● OpenMP offload code compilation for CPUs,
virtual GPU (VGPU), AMD and NVIDIA GPUs

● Intel GPU support is WIP

● Target independent math library (libm.a) for all
supported architectures. Defines sin(...), etc.

● CUDA device code interoperability with OpenMP
target. Link in CUDA device runtimes e.g., Thrust.

● Define CUDA API and builtins through OpenMP
runtime functions. Allow to retarget CUDA codes.

● HIP, SYCL, and other languages can be added as
needed. Full interoperability and portability.

● Overall WIP but proof-of-concept is ready and
under review (PACT) right now. Parts have been
upstreamed (incl. Driver) or are prepared to be.

LLVM/OpenMP as Target Independent Runtime Layer (WIP)

Host GDB running the SU3 bench CUDA code via
the OpenMP layer on the virtual GPU.

