
Improving Vectorization

for Loops with Control

Flow

Ashutosh Nema & Anupama Rasale

AMD Compilers Team

2 |

[Public]

Vectorization Of Conditional Statements

• Auto-vectorization is an essential

compiler optimization.

• In the presence of control flow, it gets

challenging.

• Generally, compilers deploy if-conversion

and code flattening approach to vectorize

control flow.

• These approaches sometimes suboptimal

and leave an optimization opportunity on

table.

3 |

[Public]

Current State Of Loop Vectorization

• LLVM already supports the vectorization of conditional statements.

• LLVM auto vectorization techniques deploy flattening of control flow where the guarded code is executed

in all the paths with the help of predicated mask instructions.

4 |

[Public]

Flattened Style Vectorization

The conditional

vector code

flattened into

vector loop body

5 |

[Public]

Challenges With Flattened Code

• The flattened code at runtime execute the instructions in all

control paths unconditionally.

• It slows down the performance when mask is all set to false

and the guarded instructions are not supposed to be executed.

• The memory access safety is ensured using the predicated

mask instructions, i.e., mask-load and mask-store.

• If the mask is set to ‘false’ then the memory location won't be

accessed.

Block With Vector

Instruction

Why Executing

Unconditionally

?

6 |

[Public]

BOSCC Style Vectorization

• Here we introduce the implementation of Branch-On-Super-
Word-Conditional-Codes (BOSCC) way of vectorization in the
presence of conditional statements.
• Paper "Introducing Control Flow into Vectorized Code" by Jaewook

Shin.

• BOSCC introduces a branch instruction that can be
conditionally taken based on the comparison result of two
vector variables.

• BOSCC encloses the vector instructions guarded by vector
predicate inside an if-statement.

• It by-passes vector instruction the guarding vector predicate
has all false values.

Block With Vector

Instruction

BOSCC Guard

Join Block

Execute

When

Required !!

7 |

[Public]

BOSCC Style Vectorization

Guard Block

Vector Block

8 |

[Public]

BOSCC Benefits

• BOSCC aims to avoid the execution for the vector instructions where the guard compare condition results

in all false mask.

• When mask is set to all false(i.e. <0,0,0,0>) values the corresponding vector instructions never get

executed, but in flatten it always get executed.

• BOSCC brings the performance uplift by avoiding the unconditional execution for the vector instructions.

9 |

[Public]

MemSafety to avoid masked instructions

• For some architecture the masked version of

memory instructions are expensive compared

to regular vector memory instructions

• i.e. mask-load mask-store

• During vectorization due to high cost for these

instructions the vectorization for some cases

can be avoided. And even when it's done its

sub optimal.

10 |

[Public]

MemSafety to avoid masked instructions

• Cases where memory access are
guaranteed to be accessed in all the paths of
the loop, we aim to avoid the masked
memory instructions by generating an
alternate sequence of instruction.

• Please note the memory accesses ‘A’, ‘B’ &
‘C’ are accessed in all the path of the loop.

Mask Store is replaced with alternate sequence

11 |

[Public]

BOSCC Design

• Facilitates to generate the required block
layout for BOSCC blocks during Vplan

• BOSCC Legal & Profitability

BOSCCBlockPlanner

• This recipe is responsible for generating the
required conditional entry check on a vector
block

VPBranchOnBOSCCGuardSC

• This recipe is responsible to generate PHI
for the live out from the guarded vector
blocks.

VPBOSCCLiveOutRecipe

12 |

[Public]

BOSCC Block Layout

13 |

[Public]

BOSCC Results

TSVC Loop BOSCC Baseline(Flatten) Uplift Percentage
s123 11.49 12.25 6.62

s124 5.44 6.23 14.5

s272 1.33 26.02 1863.47

s273 17.59 19.27 9.55

s278 15.83 28.13 77.71

s279 9.26 22.34 141.28

s1279 1.95 15.2 679.28

s2710 17.46 28.96 65.83

s3111 0.48 0.52 9.24

s3113 3.82 4.14 8.16

s441 16.71 49.81 198.06

s443 8.14 9.36 15.06

s253 27.39 26.545 -3.09

For our experiments tried TSVC vectorization suite, observed great benefit for some loops:
Runtime in Secs

14 |

[Public]

Summary

• Executing vector blocks unconditionally is sub optimal.

• BOSCC inserts a guard check to avoid execution for cases where the condition guarding a block remains

false.

• Patch is available for review - https://reviews.llvm.org/D139074

https://reviews.llvm.org/D139074

15 |

[Public]

Copyright and disclaimer
 ©2023 Advanced Micro Devices, Inc. All rights reserved.

 AMD, the AMD Arrow logo, [insert all other AMD trademarks used in the material IN ALPHABETICAL ORDER here per AMD's Guidelines on Using Trademark

Notice and Attribution] and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for

identification purposes only and may be trademarks of their respective companies.

 The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap

changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD

assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes

from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

 THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND

ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM

THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Slide 1: Improving Vectorization for Loops with Control Flow
	Slide 2: Vectorization Of Conditional Statements
	Slide 3: Current State Of Loop Vectorization
	Slide 4: Flattened Style Vectorization
	Slide 5: Challenges With Flattened Code
	Slide 6: BOSCC Style Vectorization
	Slide 7: BOSCC Style Vectorization
	Slide 8: BOSCC Benefits
	Slide 9: MemSafety to avoid masked instructions
	Slide 10: MemSafety to avoid masked instructions
	Slide 11: BOSCC Design
	Slide 12: BOSCC Block Layout
	Slide 13: BOSCC Results
	Slide 14: Summary
	Slide 15: Copyright and disclaimer
	Slide 16

