Target-Independent Integer Arithmetic

Motivation

- Integer types with target-specific width
 - E.g. C integer types: int, short, long, long long, size_t, intptr_t
- Easy, just always attach a target to the IR
 - The only portable version of the code will be the source!

Motivation

inputs Motivation Runtime Precompiled kernels inputs Model spec deploy Runtime Runtime inputs Runtime

Motivation

Use the maximum possible width?

- Not all types have maximum widths, e.g. the C "at least N bytes" types
- Pick a reasonable maximum or use arbitrary-precision?
- Truncate results to actual width when target is known

Use the maximum possible width?

- Not all types have maximum widths, e.g. the C "at least N bytes" types
- Pick a reasonable maximum or use arbitrary-precision?
- Truncate results to actual width when target is known

Use 64-bit for int

$$trunc_{16}(40000 * 2/10) = 8000$$

 $(40000_{16} * 2/10) = 1446$

$$trunc_b(f(x,y)) == f(trunc_b(x), trunc_b(y))$$

$$trunc_b(f(x,y)) == f(trunc_b(x), trunc_b(y))$$
$$b(f(x,y), i) = g(b(x,j), b(y,j)...), j \le i$$

$$trunc_b(f(x,y)) == f(trunc_b(x), trunc_b(y))$$
$$b(f(x,y), i) = g(b(x,j), b(y,j)...), j \le i$$

- / add
- ✓ sub (2's
- compl)
- ✓ mul
- ✓ left shift
- and, or, xor

- X div X floor
 - min, max
 - right shift
- K cmp

$$trunc_b(f(x,y)) == f(trunc_b(x), trunc_b(y))$$

$$trunc_b(f(x,y)) == f(trunc_b(x), trunc_b(y))$$

Just plug it in and check

$$trunc_8(2070/8) = 2 = trunc_8(2070)/trunc_8(8)$$

MLIR 'index' Dialect

- Implements operations on the builtin MLIR 'index' type
 - With the appropriate folding logic
- Implements the 🔥 Int type
- PSA: Don't use `arith` dialect for index types 😤

Integer range analysis

- Almost the same as folding

$$trunc_b(f(x,y)) == f(trunc_b(x), trunc_b(y))$$

 $trunc_8([180, 200] * [1, 2]) = [180, 144]$

Integer range analysis

- Almost the same as folding

$$trunc_b(f(x,y)) == f(trunc_b(x), trunc_b(y))$$

 $trunc_8([180, 200] * [1, 2]) = [180, 144]$

 When not satisfied, take the union of ranges computed at the minimum and maximum widths

$$f(trunc_b(x), trunc_b(y)) \cup f(x, y)$$

Thanks!

