
“Fallback” of load/store into

gather/scatter in LLVM-IR
Euro LLVM 2023 Developers’ Meeting

Quick Talk by Omer Aviram

✕ Motivation

✕ “Fallback” utility overview

✕ Usage example

✕ Cost model

✕ Performance and robustness conclusions

Architectures employing hardware-controlled loops with zero-overhead,
supporting both memory patterns:

• load/store units - with pre-configured strides based on compiler analysis -
controlling loop execution.

• scatter/gather units for indirect accesses calculated in runtime.

Motivation – Overcoming memory accessing limitations

Motivation Overview Usage example Cost model
Performance /

Robustness

Hardware resources

• Finite number of load/store units

Indirect index accesses

• arr[idx_arr[i]] – Unable to pre-configure memory access stride.

Motivation Overview Usage example Cost model
Performance /

Robustness

Motivation – Overcoming memory accessing limitations

Architectures employing hardware-controlled loops with zero-overhead,
supporting both memory patterns:

• load/store units - with pre-configured strides based on compiler analysis -
controlling loop execution.

• scatter/gather units for indirect accesses calculated in runtime.

LLVM-IR utility designed to convert ("fallback") memory accesses to sequential
data (such as vectorized load/store) into indirect accesses (scatter/gather)

“Fallback” utility overview

Motivation Overview Usage example Cost model
Performance /

Robustness

LLVM-IR utility designed to convert ("fallback") memory accesses to sequential
data (such as vectorized load/store) into indirect accesses (scatter/gather)

“Fallback” utility overview

Semantics reminder (LLVM LangRef):

• load instruction recieves a single pointer (to scalar/vector) from memory

declare <8 x float> @llvm.masked.load.v8f32(ptr <ptr>, i32 <alignment>, <8 x i1> <mask>,
<8 x float> <passthru>)

• gather instruction receives a vector of pointers to arbitrary memory locations and
gathers them into a vector.

declare <8 x float> @llvm.masked.gather.v8f32.v8(<8 x ptr> <ptrs>, i32 <alignment>, <8 x
i1> <mask>, <8 x float> <passthru>)

Motivation Overview Usage example Cost model
Performance /

Robustness

Explaining the transformation (1)

void foo(int4 *base, int *idx_arr, int4 *out) {
for(int x = 0; x < WIDTH; x++)
out[x] = base[idx_arr[x]];

}

base[idx_arr[x]] is an indirect memory access – compiler is unable to
pre-configure its stride into the load/store unit .

Instead - “fallback” it into an indirect masked gather instruction.

Motivation Overview Usage example Cost model
Performance /

Robustness

Explaining the transformation (2) – LLVM IR

%orig_gep = getelementptr inbounds <4 x i32>, ptr %base, i32 %loaded.idx
%loadVec4 = load <4 x i32>, ptr %orig_gep, align 8

Fallback involves manipulating the GEP -

from a pointer to vector of sequential data

into a vector of pointers to consecutive elements

Motivation Overview Usage example Cost model
Performance /

Robustness

Explaining the transformation (2) – LLVM IR

%orig_gep = getelementptr inbounds <4 x i32>, ptr %base, i32 %loaded.idx
%loadVec4 = load <4 x i32>, ptr %orig_gep, align 8

%mul.by.vf = mul i32 %loaded.idx, 4

%splatinsert = insertelement <4 x i32> poison, i32 %mul.by.vf, i32 0

%splat.mul.idx.vf = shufflevector <4 x i32> %.splatinsert, <4 x i32>

poison, <4 x i32> zeroinitializer

%vec.idx = add <4 x i32> %splat.mul.idx.vf, <i32 0, i32 1, i32 2, i32 3>

%gather_gep = getelementptr <4 x i32>, ptr %base, i32 0, <4 x i32> %vec.idx

%fallback.gather = call <4 x i32> @llvm.masked.gather.v4i32.v4((<4 x ptr>)>

%gather_gep, i32 8, <4 x i1> %true_mask, <4 x i32> %passthrough)

Fallback involves manipulating the GEP -

from a pointer to vector of sequential data

into a vector of pointers to consecutive elements

Motivation Overview Usage example Cost model
Performance /

Robustness

➢ Transforming
base[idx_arr[x]]

Some fallback transformations are less trivial

Pointer arithmetic resulting in a “chain” of GEPs - Type reinterpretation -

base = base_ptr + i * 8 + j * 4;
char res = base[x+y*YStride];

for(int x = 0; x < height; x++)
out[x] = as_short2(in1[in2[x]]);

}

Motivation Overview Usage example Cost model
Performance /

Robustness

Utilizing hardware resources

for(int x = 0; x < height; x++) {
out[x] = base1[x] + base2[2 * x + 7];

}

• Given a VLIW architecture with limited hardware resources:
• 1 load unit

• 1 store unit

• 1 scatter/gather unit

Motivation Overview Usage example Cost model
Performance /

Robustness

Utilizing hardware resources

for(int x = 0; x < height; x++) {
out[x] = base1[x] + base2[2 * x + 7];

}

• Given a VLIW architecture with limited hardware resources:
• 1 load unit

• 1 store unit

• 1 scatter/gather unit

Motivation Overview Usage example Cost model
Performance /

Robustness

Converting one of the load instructions (base1[x] or base2[2 * x + 7])
into a gather will better utilize hardware resources.

But which load is best to “fallback”?

Targets may implement architecture-based cost model, to decide which
memory access to “fallback” in order to maximize performance.

Target supported cost model

Motivation Overview Usage example Cost model
Performance /

Robustness

for(int x = 0; x < height; x++) {
out[x] = base1[x] + base2[2 * x + 7];

}

Targets may implement architecture-based cost model, to decide which
memory access to “fallback” in order to maximize performance.

Target supported cost model

Motivation Overview Usage example Cost model
Performance /

Robustness

for(int x = 0; x < height; x++) {
out[x] = base1[x] + base2[2 * x + 7];

}

Fallback
decision

Physical
registers

bandwidth

Index
calculation
overhead

Potential
stalls

Targets may implement architecture-based cost model, to decide which
memory access to “fallback” in order to maximize performance.

Target supported cost model

Motivation Overview Usage example Cost model
Performance /

Robustness

for(int x = 0; x < height; x++) {
out[x] = base1[x] + base2[2 * x + 7];

}

Fallback
decision

Physical
registers

bandwidth

Index
calculation
overhead

Potential
stalls

base1[x] requires less runtime index
calculation than base2[2 * x + 7] -> better
fallback performance

• Compiler robustness – overcome hardware limitations
• ~5% more tests compiled for target successfully.

• Non-optimized naïve code has a better chance to compile successfully
– better user experience for compiler customers.

• Performance may improve thanks to balancing unit pressure between
load/store compared to gather/scatter.

Performance/Robustness conclusions

Motivation Overview Usage example Cost model
Performance /

Robustness

Thank you!

	Slide 1: “Fallback” of load/store into gather/scatter in LLVM-IR
	Slide 2
	Slide 3: Motivation – Overcoming memory accessing limitations
	Slide 4: Motivation – Overcoming memory accessing limitations
	Slide 5: “Fallback” utility overview
	Slide 6: “Fallback” utility overview
	Slide 7: Explaining the transformation (1)
	Slide 8: Explaining the transformation (2) – LLVM IR
	Slide 9: Explaining the transformation (2) – LLVM IR
	Slide 10: Some fallback transformations are less trivial
	Slide 11: Utilizing hardware resources
	Slide 12: Utilizing hardware resources
	Slide 13: Target supported cost model
	Slide 14: Target supported cost model
	Slide 15: Target supported cost model
	Slide 16: Performance/Robustness conclusions
	Slide 17: Thank you!

