
Using the clang data-flow 
framework for null-pointer 

analysis
Viktor Cseh

cseh.viktor@gmail.com, Github: @Discookie

Eötvös Loránd University, Budapest
Ericsson Hungary



Data-flow primer
• Approximation of the program 

state at various points
• Basic principles: transfer, merge
• Iterative method - needs to reach a 

fixpoint to be useful
• Transfer function needs to be 

monotone

EuroLLVM Developer's Meeting 2023 2



Clang data-flow framework
• Analysis classes: MAY/MUST

• Clang Static Analyzer is
good at MAY-analyses
• Not suited for MUST-analysis
• Few standalone data-flow analyses

• New data-flow framework in early 
2022

EuroLLVM Developer's Meeting 2023 3



Null-pointer analysis
• Clang Static Analyzer is already 

good at detecting null-pointer 
dereferences

• Our goal: Reverse null checker
• Pointer is checked after it's already 

dereferenced

EuroLLVM Developer's Meeting 2023 4



Lattice vs. boolean constraints
• Lattices

• Operations are fast and well-defined,
but stores less information

• Boolean constraints
• Can store context, but requires a

SAT-solver - can be expensive!
• true, false, 'uncertain' values

• Data-flow framework supports
both approaches

EuroLLVM Developer's Meeting 2023 5



Lattice vs. boolean constraints/2
• Flow condition token

• Precondition to the program’s current state

EuroLLVM Developer's Meeting 2023 6



Architecture and implementation notes
• DataflowAnalysis class

• Implements transfer, 
branchTransfer, merge

• operator*, operator->,
and comparisons

• 2 boolean constraints:
is-null, is-nonnull
• Unknown state stored as 

'uncertain'

EuroLLVM Developer's Meeting 2023 7



Constraint information and performance
• Various amounts of stored information and 

performance
• Only emulate lattices, true/false

• Main bottleneck is number of boolean values
• Encode conditional data

• The constraint grows very quickly - slows down 
the solver

• No way to get size of constraint-expression 
(yet)

EuroLLVM Developer's Meeting 2023 8



Widening
• Ran every time a head node executes twice
• Default: if different, forget all information

• Loses information, but analysis terminates 
faster

• First approach: check if the expressions are 
the same using the SAT solver
• Involves multiple calls to the solver - each call 

is slow
• Can lead to very long analysis times

EuroLLVM Developer's Meeting 2023 9



Widening/2
• Current approach: Check trivial 

true/false cases, lose information 
otherwise
• Terminates slower, but stores more 

constraint information
• Optimize known true/false 

constraints

EuroLLVM Developer's Meeting 2023 10



Results (on C++ projects)
• 1 report (% of files analyzed):

• libwebm (95%)
• Qtbase (11%)

• 0 reports:
• tinyxml2 (100%)
• xerces (98%)
• bitcoin (98%)
• protobuf (45%)
• contour (99%)

EuroLLVM Developer's Meeting 2023 11



Framework limitations: Solver timeouts
• There is a timeout on data-flow 

iterations
• No timeout on SAT solver runtime
• Creating the constraints is fast, querying 

the solver is slow
• Constraints get large very quickly

• Widening and reset on merge helps, but 
not always

• Flow condition is kept across all states

EuroLLVM Developer's Meeting 2023 12



Framework limitations: Type modeling
• No C support due to boolean 

datatype issues
• Analysis crashes on any condition

• Quick fix: value tracking for integers
• Long-term solution: SMT solver

EuroLLVM Developer's Meeting 2023 13



Debug using the framework
• Environment is logged nicely, 

each value is visible
• -dataflow-log and HTML page,

good for visualization
• Constraints are difficult

to debug
• No information attached to

boolean variables

EuroLLVM Developer's Meeting 2023 14



Future work
• General-purpose pointer nullability checker
• Different types of values - integers, smart pointers, etc.
• Detect and handle assertions

Framework: 
• Interprocedural analysis – function summaries
• Z3 solver
• Support for more data types

EuroLLVM Developer's Meeting 2023 15



Thank you!

• Acknowledgements
• The static analysis team at Ericsson

• Bibliography
• LLVM. Data-flow analysis – an informal introduction. 2022. https://clang.llvm.org/docs/DataFlowAnalysisIntro.html
• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. 2009. Data Flow Analysis: Theory and Practice (1st. ed.). CRC Press, Inc., USA.
• Keith D. Cooper, Linda Torczon. Chapter 9 - Data-Flow Analysis. Engineering a Compiler (Third Edition). 2023. Morgan Kaufmann.
• David Hovemeyer, Jaime Spacco, and William Pugh. 2005. Evaluating and tuning a static analysis to find null pointer bugs.

SIGSOFT Softw. Eng. Notes 31, 1 (January 2006), 13–19.
• Collavizza, Hélene, and Michel Rueher. "Exploration of the capabilities of constraint programming for software verification.” TACAS 2006,

Held as Part of ETAPS 2006, Vienna, Austria, March 25-April 2, 2006. Proceedings 12. Springer Berlin Heidelberg, 2006.

EuroLLVM Developer's Meeting 2023 16

https://clang.llvm.org/docs/DataFlowAnalysisIntro.html

