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WHY FAST, ACCURATE, AND STATIC COST MODELS?

» Benchmarking is expensive and noisy.

» Cost models might be called millions of times during training.

» Having deterministic results can make ML training easier.

» The better the accuracy, the more "deterministic" model training can be.

» Higher accuracy leads to better deployed models.



CURRENT LINEAR MODEL

Currently, we’re using a linear model, implemented in
llvm/lib/CodeGen/RegAllocScore.cpp
» Counts the number of a couple memory specific instructions, weights by latencies and MBB frequency.

» Does produce some signal.

» Leaves a lot to be desired in terms of "determinism" in training.

» Still can produce performant heuristic-replacing models. One is currently deployed in Google Search.
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EVALUATING COST MODELS - METRICS

» Polarity correct - polarity prediction around an arbitrary pivot point.

» Mean difference

» Ordering (tau coefficient)



LINEAR MODEL PERFORMANCE

» Does not perform particularly well.

» Polarity correct metric hovers around the 50-60% mark.

» Average difference is a little under 5%.

» Tau coefficient for standard benchmarks hovers around 0.

» Fitting new weights greatly improves performance but offers no generalization.



USING SOA BB COST MODELS

» New BB cost models are quite accurate1 and reasonably fast.

» Models many more properties than the simple linear model (like instruction ordering).

» Learned models are also highly performant2.

1Abel and Reineke, “uiCA”.
2Sykora et al., GRANITE.
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PERFORMANCE OF SOA BB COST MODELS

» Significantly better than the linear model on all metrics.

» Percent error drops by up to 50%.

» Polarity accuracy increases even in hard to model cases.

» Actual accuracy of ordering is about the same.



LIMITATIONS OF THIS WORK

» The current evaluation framework only works on small benchmarks.

» Only a small variety of benchmarks have been tested.

» Achieving ideal execution conditions while running non-trivial benchmarks is difficult.

» Only fuzzed part of the register allocator.



WHERE/WHY DO THESE MODELS FAIL

» These models all assume ideal execution environments.

» Ideal conditions are rare and non-ideal conditions can change results by multiple orders of magnitude.

» Presence of L1 cache misses significantly impacts the performance of the linear model.

» Anything beyond the stream of instructions in a BB is not modelled (i.e., branching, function call
overhead).



FUTURE DIRECTIONS - BETTER LEARNED BB MODELS

» Learned cost models are more adaptable to new (micro)architectures.

» Ground truth data has a lot of collection nuances.34

» Should be landing changes soon in llvm-exegesis to alleviate this problem.

» Assembly fuzzing might alleviate models learning false patterns5.

3Abel and Reineke, “uiCA”.
4Chen et al., “BHive”.
5Ritter and Hack, “AnICA”.



MORE PROFILE INFORMATION

» Modelling non-ideal execution completely statically is essentially impossible.

» Collecting profile information and tagging specific instructions should massively increase accuracy.

» Building data collection pipelines and integrating this data into LCMs is an open scientific/engineering
problem.



ARTIFACTS AND Q&A

» Artifacts available at
https://github.com/boomanaiden154/regalloc-cost-model-evaluation

» Questions?

https://github.com/boomanaiden154/regalloc-cost-model-evaluation

