Image Processing Ops as first class citizens in MLIR: write once, vectorise everywhere! Prathamesh Tagore

Speaker: Prathamesh Tagore (VJTI)

Authors: Prathamesh Tagore (VJTI), Hongbin Zhang (ISCAS), Rishabh Bali (VJTI), Yuchen Li (ISCAS)

prathameshtagore@gmail.com

Challenge

Make Image Processing faster 🚄 to make life easier

A possible solution

Use Vectorisation?

CPU Vectorisation in Image Processing

__m128 dot_product_high = _mm256_extractf128_ps(dot_product, 1); __m128 dot_product_low = _mm256_castps256_ps128(dot_product); dot_product_low = _mm_add_ps(dot_product_low, dot_product_high); dot_product_low = _mm_hadd_ps(dot_product_low, dot_product_low); dot_product_low = _mm_hadd_ps(dot_product_low, dot_product_low);

Universal intrinsics

Potential problems while dealing with SIMD intrinsics

 Reliance on a wrapper to provide unified API for targeting each abstraction (Ex. Universal Intrinsics)

> More Code Maintainance

Separate support for emerging technologies

Non-trivial design decisions for novel features

Potential problems while dealing with SIMD intrinsics

Manual reimplementation of existing algorithms for each hardware technology

More Code Maintainance Separate support for emerging technologies

Potential Solution

Why we chose MLIR

DIP (Digital Image Processing) Dialect Overview

DIP Dialect Examples

Original Image

Rotation (45°) Output

Resize Output

Laplacian Filter Output

DIP Dialect Examples

Original Image

Dilation Output

Erosion Output

DL Inference

Single Channel 2D Image Filtering

Considered boundary extrapolation strategies for 2D Image Filtering

Anchor point position and padding

Performance Data

Performance data

Operations currently supported by the DIP dialect:

Potential Scope

Target more hardware? Integrate with existing MLIR based ML workflows

Interoperability with linalg dialect

Networking

• Email: prathameshtagore@gmail.com

• GitHub: <u>https://github.com/meshtag</u>

• CV: Link

• LinkedIn: <u>https://www.linkedin.com/in/prathamesh-tagore-61aa1a1b1/</u>

• Twitter: <u>https://twitter.com/PrathameshTago1</u>

References

- <u>https://docs.opencv.org/4.x/d6/dd1/tutorial_univ_intrin.html</u>
- <u>https://github.com/buddy-compiler/buddy-mlir</u>
- <u>https://github.com/buddy-compiler/buddy-benchmark</u>
- https://carbon.now.sh/
- Lucidchart