
RISC-V Vector Extension Support in MLIR:
Motivation, Abstraction, and Application

Speaker: Hongbin Zhang | hongbin2019@iscas.ac.cn

Authors: Hongbin Zhang (ISCAS), Diego Caballero (Google),

Xulin Zhou (JNU), Tao Liang (HIT), Yingchi Long (HIT), Haolin Pan(ISCAS)

RISC-V Vector （RVV） Extension Introduction

1

RVV Overview

The RISC-V Vector extension adds support for high-

performance vector operations that allow for the efficient

processing of large amounts of data.

RVV Features
- Dynamic vector length at runtime, smaller code size.

- Vector length agnostic (VLA), better code portability.

- Functional unit pipelining, larger data-level parallelism.

RVV Ecosystem
- Library: OpenCV, OpenBLAS, etc.

- Compiler: GCC, LLVM

- Emulator: QEMU

- Hardware: Intelligence X280, XuanTie C906, etc.
RVV Ecosystem

…

OpenBLAS
…

Library

Hardware

Toolchain

2

Motivation: RVV Special Features

A [0] A [1] A [2] A [3] B B B B
+

C [0] C [1] C [2] C [3]

A [4] A [5] A [6] A [7]

C [4] C [5] C [6] C [7]

C [0] C [1] C [2] C [3] C [4] C [5] C [6] C [7]

A [0]

A [1]

A [2]

A [3]

A [4]

A [5]

A [6]

A [7]

B

B

Broadcast

RVV Vector Processor SIMD Array Processor
Functional Unit Pipelining: Different processes work simultaneously. Functional Unit Array: Homogeneous unit work simultaneously.

The functional unit is fully pipelined,

and it can start a new operation on every clock cycle. [1]
[1] Hennessy J L, Patterson D A. Computer architecture: a quantitative approach. Sixth Edition.

3

A [0] A [1] A [2] A [3] B B B B
+

C [0] C [1] C [2] C [3]

A [4] A [5] A [6] A [7]

C [4] C [5] C [6] C [7]

C [0] C [1] C [2] C [3] C [4] C [5] C [6] C [7]

A [0]

A [1]

A [2]

A [3]

A [4]

A [5]

A [6]

A [7]

B

B

Broadcast

The functional unit is fully pipelined,

and it can start a new operation on every clock cycle. [1]
[1] Hennessy J L, Patterson D A. Computer architecture: a quantitative approach. Sixth Edition.

* VLEN = Hardware Vector Register Length * VL = Processing Vector Length

RVV Vector Processor SIMD Array Processor

VLEN* – Instruction Set

Fixed VL* at Runtime

VLEN* - Processor Design

Vector Register Group

Dynamic VL* at Runtime

Motivation: RVV Special Features

Functional Unit Pipelining: Different processes work simultaneously. Functional Unit Array: Homogeneous unit work simultaneously.

4

A[0] A[1] A[??] A[??]... ... B[0] B[1] B[??] B[??]... ...

C[0] C[1] C[??] C[??]... ...

+

Get the application vector length (d) at runtime

Tail = getTail(d)
Loop:

if (not Tail)
vector load
vector add
vector store

else
calculate mask
masked load
masked add
masked store

end if
End loop

Mask-Based Approach

AVL = d
While(AVL > 0):

do:
vl = setvl AVL，LMUL，SEW
vector load vl
vector add vl
vector store vl
AVL = AVL - vl

End

Strip-Mining Approach

V31

V0
... ...

Vector Group

VLMAX = VLEN x LMUL / SEW

VLEN （ Hardware Vector Register）

VLEN x LMUL

LMUL = 2
(Vector Register Group Multiplier)

RVV Vector Register Configuration

(The maximum number of elements that a vector instruction can operate on)

VLA （Vector Length Agnostic）：

RVV code adapts to the machine's vector register length at runtime.

RVV Tail Processing

(Selected Element Width) SEW

Motivation: RVV Special Features

VLMAX assists in calculating the VL returned by the vsetvl command

（VL: Processing Vector Length）

5

Iterations for fixed vector length

Tail processing with mask operations

A[0] A[1] A[??] A[??]... ... B[0] B[1] B[??] B[??]... ...

C[0] C[1] C[??] C[??]... ...

+

Get the application vector length (d) at runtime

Tail = getTail(d)
Loop:

if (not Tail)
vector load
vector add
vector store

else
calculate mask
masked load
masked add
masked store

end if
End loop

Mask-Based Approach

AVL = d
While(AVL > 0):

do:
vl = setvl AVL，LMUL，SEW
vector load vl
vector add vl
vector store vl
AVL = AVL - vl

End

Strip-Mining Approach

RVV Tail Processing

Motivation: RVV Special Features

AVL = d
While(AVL > 0):

do:
vl = setvl AVL，LMUL，SEW
vector load vl
vector add vl
vector store vl
AVL = AVL - vl

End

6

Set Dynamic VL

Ops Accept Dynamic VL

MLIR Limitation
%0 = arith.addf %v, %v : vector<8xf32>

Information Required at Compile Time：

- Dynamic VL Configuration

- AVL Configuration

- LMUL Configuration

- SEW Configuration

- Operations Dynamic VL Operand

No SETVL Operation
Cannot Set Dynamic VL

Vector operations do not accept dynamic VL parameters.

A[0] A[1] A[??] A[??]... ... B[0] B[1] B[??] B[??]... ...

C[0] C[1] C[??] C[??]... ...

+

Get the application vector length (d) at runtime

Tail = getTail(d)
Loop:

if (not Tail)
vector load
vector add
vector store

else
calculate mask
masked load
masked add
masked store

end if
End loop

Mask-Based Approach Strip-Mining Approach

Motivation：MLIR Limitation

RVV Tail Processing

7

MLIR RISC-V Vector Dialect

• Operation

• RVV Operation

• RVV Intrinsic Operation

• Type

• Scalable Vector Type

• Conversion/Translation

• RVV Dialect

• LLVM Dialect

• LLVM IR

• Integration Test

MLIR Lowering Paths - https://mlir.llvm.org/docs/Dialects/Vector/

MLIR Abstraction Support for RVV Backend

Vector Dialect

AMX Dialect

X86 Vector Dialect

Arm Neon Dialect

Arm SVE Dialect

RVV Dialect

8

MLIR RISC-V Vector Dialect

• Operation

• RVV Operation

• RVV Intrinsic Operation

• Type

• Scalable Vector Type

• Conversion/Translation

• RVV Dialect

• LLVM Dialect

• LLVM IR

• Integration Test

MLIR Lowering Paths - https://mlir.llvm.org/docs/Dialects/Vector/

MLIR Abstraction Support for RVV Backend

Vector Dialect

AMX Dialect

X86 Vector Dialect

Arm Neon Dialect

Arm SVE Dialect

RVV Dialect

Upstream

Fragmentation

9

Vector Dialect

AMX Dialect

X86 Vector Dialect

Arm Neon Dialect

Arm SVE Dialect

RVV Dialect
MLIR Lowering Paths - https://mlir.llvm.org/docs/Dialects/Vector/

Proposed Approach
• Add abstraction support for dynamic VL in vector dialect.

• Add abstraction support for RVV-specific VL in RVV dialect.

• Improve generality with VP Intrinsic.

• Implement vectorization pass using a combination of

Vector and RVV dialects.

Add abstraction support for dynamic VL.

Add abstraction support for RVV-specific ops.

MLIR Abstraction Support for RVV Backend

10

MLIR Abstraction Support for RVV Backend

Set Dynamic Vector Length

Predication Region

Scalable Vector Type

Dynamic Vector Length

A[0] A[1] A[??] A[??]... ... B[0] B[1] B[??] B[??]... ...

C[0] C[1] C[??] C[??]... ...

+

Get the application vector length (d) at runtime

Tail = getTail(d)
Loop:

if (not Tail)
vector load
vector add
vector store

else
calculate mask
masked load
masked add
masked store

end if
End loop

Mask-Based Approach

AVL = d
While(AVL > 0):

do:
vl = setvl AVL，LMUL，SEW
vector load vl
vector add vl
vector store vl
AVL = AVL - vl

End

Strip-Mining Approach

RVV Tail Processing

11

Application: MatMul Optimization

Step 5

Step 6~9

12

Buddy Compiler As A Service: RVV Integration

https://buddy.isrc.ac.cn/

VP Intrinsic
Example Cases

VP Intrinsic
Example Code

MLIR Lowering

Translate to LLVM IR

Execute with QEMU

Error Report

13

Summary
RVV Features
- Dynamic vector length at runtime, smaller code size.
- Vector length agnostic (VLA), better code portability.
- Functional unit pipelining, larger data-level parallelism.

MLIR Limitations for RVV Backend
MLIR cannot exploit the VLA features of RVV
- No vector operation can set dynamic VL.
- Vector operations do not accept dynamic VL parameters.

Proposed Approach and Application
- Add SetVL operation in RVV-specific dialect .
- Add vector predication operation in Vector dialect.
- Implement MatMul optimization with mixed Vector and RVV dialects.

[WIP] Upstream Proposal (New Page)
- Integrate vector length configuration with the current mask operation.
- Create a standalone vector length operation.
- Integrate dynamic vector representation into ODS.

Thanks
hongbin2019@iscas.ac.cn

