
MLIR-based offline memory planning and other graph-level
optimisations for xcore.ai

Deepak Panickal Laszlo Kindrat*(Modular) Scott Roset

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd.

*Work done while
at XMOS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 2

BACKGROUND

xcore.ai is a high performance, low latency microcontroller, with 16 logical cores
split between two multithreaded processor ‘tiles’, each with 512KB of SRAM

We have developed an MLIR-based graph compiler(xformer) to optimise TFLite
models to deploy on xcore.ai

I will outline our workflow and focus on three MLIR passes implemented as part of
memory usage optimisations

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 3

UNOPTIMISED WORKFLOW

Trained floating
point network

Lite convertor

Alternative framework flow
trained network

to TensorFlow
convertor

Lite for
Microcontrollers

Interpreter

TFLite
model

Reference kernels used are
very slow as they are not
optimised for our Vector

Processing Unit

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 4

OPTIMISED WORKFLOW WITH GRAPH COMPILER

Trained floating
point network

Lite convertor

Alternative framework flow
trained network

to TensorFlow
convertor

Lite for
Microcontrollers

Interpreter

TFLite
model

xformer

MLIR-based
graph

compiler

xcore
model

xcore neural
network library

TensorFlow
Lite Dialect

Xcore
Dialect

TensorFlow
Lite Dialect

Why interpreter-less?

Code size is critical - only include the code for
operators used in the model

Remove unnecessary runtime overhead such as
interpreter setup and such code

tflite-micro-compiler

A tiny open-source project

Runs tflite-micro interpreter and logs runtime info

Generates a C++ file for the model

https://github.com/cpetig/tflite_micro_compiler

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 5

INTERPRETER-LESS WORKFLOW

https://github.com/cpetig/tflite_micro_compiler

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 6

INTERPRETER-LESS WORKFLOW

Trained floating
point network

Lite convertor

Alternative framework flow
trained network

to TensorFlow
convertor

TFLite
model

xformer

MLIR-based
graph

compiler

model as
C++ source

xcore neural
network library

Lite for
Microcontrollers

library

Model binary

+
tflite micro
compiler

AN EXAMPLE – MOBILENETV2 (160X160X3, ALPHA = 1.0)

Unoptimised
Initial

optimisations
Arena

planning
Operation
splitting

Offloading to
flash

RAM used
(KB)

1385

Binary size
(KB)

2590

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 7

AN EXAMPLE – MOBILENETV2 (160X160X3, ALPHA = 1.0)

Unoptimised
Initial

optimisations
Arena

planning
Operation
splitting

Offloading to
flash

RAM used
(KB)

1385 1258

Binary size
(KB)

2590 2312

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 8

MEMORY PLAN ANALYSIS PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 9

§ Plans the tensor arena and allocates offsets for tensors

MEMORY PLAN ANALYSIS PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 10

§ %2 = "tfl.conv_2d"(%arg0, %0, %1) {dilation_h_factor = 1 : i32,
dilation_w_factor = 1 : i32, fused_activation_function = "RELU6", padding =
"SAME", stride_h = 2 : i32, stride_w = 2 : i32} :
(tensor<?x160x160x3x!quant.uniform<i8:f32, 0.0039215688593685627:-128>>,
tensor<32x3x3x3x!quant.uniform<i8<-127:127>:f32:0, 0.0052513480186462402>>,
tensor<32x!quant.uniform<i32:f32:0, 2.0593523004208691E-5>>) ->
tensor<?x80x80x32x!quant.uniform<i8:f32, 0.023529412224888802:-128>>

§ %5 = "tfl.depthwise_conv_2d"(%2, %3, %4) {depth_multiplier = 1 : i32,
dilation_h_factor = 1 : i32, dilation_w_factor = 1 : i32,
fused_activation_function = "RELU6", padding = "SAME", stride_h = 1 : i32,
stride_w = 1 : i32} : (tensor<?x80x80x32x!quant.uniform<i8:f32,
0.023529412224888802:-128>>, tensor<1x3x3x32x!quant.uniform<i8<-
127:127>:f32:3, 0.021009480580687523}>>, tensor<32x!quant.uniform<i32:f32:0,
4.9434072570875287E-4>>) -> tensor<?x80x80x32x!quant.uniform<i8:f32,
0.023529412224888802:-128>>

MEMORY PLAN ANALYSIS PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 11

Walk and calculate non-
constant tensor sizes

Prepare map of
firstUsed and
lastUsed ops

Identify ops that
can be overlapped

Greedily allocate
offsets for size-
sorted tensors

Prepare the
allocation plan

MEMORY PLAN ANALYSIS PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 12

Walk and calculate non-
constant tensor sizes

Prepare map of
firstUsed and
lastUsed ops

Identify ops that
can be overlapped

Greedily allocate
offsets for size-
sorted tensors

Prepare the
allocation plan

Inputs and outputs
are non-constants

Filter and bias are
constants

MEMORY PLAN ANALYSIS PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 13

Prepare map of firstUsed
and lastUsed ops

§ Use Liveness Analysis pass in MLIR

§ This is used to identify simultaneously alive tensors

§ The largest simultaneously alive tensors defines the
peak memory usage for the graph

Identify ops that
can be overlapped

Greedily allocate
offsets for size-
sorted tensors

Prepare the
allocation plan

Walk and calculate
non-constant
tensor sizes

MEMORY PLAN ANALYSIS PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 14

Identify ops that can be
overlapped

Greedily allocate
offsets for size-
sorted tensors

Prepare the
allocation plan

Walk and calculate
non-constant
tensor sizes

Prepare map of
firstUsed and
lastUsed ops

Input and output for
Pad can be
overlapped

MEMORY PLAN ANALYSIS PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 15

Greedily allocate offsets
for size-sorted tensors

Prepare the
allocation plan

Walk and calculate
non-constant
tensor sizes

Prepare map of
firstUsed and
lastUsed ops

Identify ops that
can be overlapped

§ The allocation algorithm is similar to the one used in
Tensorflow Lite for Microcontrollers for arena
planning

§ Doing it in MLIR gives us much more control

§ We want to minimise the total memory used while
avoiding fragmentation

MEMORY PLAN ANALYSIS PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 16

Prepare the allocation plan

Walk and calculate
non-constant
tensor sizes

Prepare map of
firstUsed and
lastUsed ops

Identify ops that
can be overlapped

Greedily allocate
offsets for size-
sorted tensors

§ The allocation plan is an array of offsets, one for
every tensor in the model, written to flatbuffer
metadata

§ -1 is used for constant tensors

§ 0,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-
1,-1,-1,-1,-1,-1,-1 204800,-1,-1,0,-1,-1,204800,-1,-
1,629856, 629856,827136,629856,800256,629856,-1,-1

AN EXAMPLE – MOBILENETV2 (160X160X3, ALPHA = 1.0)

Unoptimised
Initial

optimisations
Arena

planning
Operation
splitting

Offloading to
flash

RAM used
(KB)

1385 1258

Binary size
(KB)

2590 2312

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 17

AN EXAMPLE – MOBILENETV2 (160X160X3, ALPHA = 1.0)

Unoptimised
Initial

optimisations
Arena

planning
Operation
splitting

Offloading to
flash

RAM used
(KB)

1385 1258 798

Binary size
(KB)

2590 2312 2312

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 18

OPERATION SPLIT PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 19

§ Splits operations into multiple ops to reduce peak memory
usage

OPERATION SPLIT PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 20

§ Annotation can be specified by
command-line options

§ We also have partially working auto-
annotation based on Liveness
Analysis pass and peak memory
usage

Annotate ops to be split

Insert strided
slices and concat

Calculate overlap
and hoist strided

slices

Repeat until
desired level

OPERATION SPLIT PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 21

Annotate ops to be split

Insert strided
slices and concat

Calculate overlap
and hoist strided

slices

Repeat until
desired level

OPERATION SPLIT PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 22

Insert strided slices and
concat

Calculate overlap
and hoist strided

slices

Repeat until
desired level

Annotate ops to be
split

OPERATION SPLIT PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 23

Calculate overlap and
hoist strided slices

Repeat until
desired level

Annotate ops to be
split

Insert strided
slices and concat

Slices overlap due
to change in size

OPERATION SPLIT PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 24

Repeat until desired level

Annotate ops to be
split

Insert strided
slices and concat

Calculate overlap
and hoist strided

slices

Pad values split
across slices

OPERATION SPLIT PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 25

Repeat until desired level

Annotate ops to be
split

Insert strided
slices and concat

Calculate overlap
and hoist strided

slices

AN EXAMPLE – MOBILENETV2 (160X160X3, ALPHA = 1.0)

Unoptimised
Initial

optimisations
Arena

planning
Operation
splitting

Offloading to
flash

RAM used
(KB)

1385 1258 798

Binary size
(KB)

2590 2312 2312

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 26

AN EXAMPLE – MOBILENETV2 (160X160X3, ALPHA = 1.0)

Unoptimised
Initial

optimisations
Arena

planning
Operation
splitting

Offloading to
flash

RAM used
(KB)

1385 1258 798 363

Binary size
(KB)

2590 2312 2312 2337

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 27

FLASH IMAGE PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 28

§ Offload weights in the model to a flash image which can
then be streamed in at runtime

FLASH IMAGE PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 29

Conditionally insert
XC_LoadConstant ops

Change execution
order

Combine loads
and lower to

XC_LoadFlash op

Filter and bias are
constants

FLASH IMAGE PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 30

Conditionally insert
XC_LoadConstant ops

Change execution
order

Combine loads
and lower to

XC_LoadFlash op

Constant is too
small

FLASH IMAGE PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 31

Change execution order

Combine loads
and lower to

XC_LoadFlash op

Conditionally insert
XC_LoadConstant

ops

We want these loads
done just before it is
needed by Conv2D

FLASH IMAGE PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 32

Combine loads and lower
to XC_LoadFlash op

Conditionally insert
XC_LoadConstant

ops

Change execution
order

Two loads are to the
same user op

FLASH IMAGE PASS

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 33

Combine loads and lower
to XC_LoadFlash op

Conditionally insert
XC_LoadConstant

ops

Change execution
order

AN EXAMPLE – MOBILENETV2 (160X160X3, ALPHA = 1.0)

Unoptimised
Initial

optimisations
Arena

planning
Operation
splitting

Offloading to
flash

RAM used
(KB)

1385 1258 798 363

Binary size
(KB)

2590 2312 2312 2337

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 34

AN EXAMPLE – MOBILENETV2 (160X160X3, ALPHA = 1.0)

Unoptimised
Initial

optimisations
Arena

planning
Operation
splitting

Offloading to
flash

RAM used
(KB)

1385 1258 798 363 384

Binary size
(KB)

2590 2312 2312 2337 488

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 35

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 36

CHALLENGES AND FUTURE PLANS

Trained floating
point network

Lite convertor

Alternative framework flow
trained network

to TensorFlow
convertor

TFLite
model

xformer

MLIR-based
graph

compiler

model as
C++ source

xcore neural
network library

Lite for
Microcontrollers

library

Model binary

+
tflite micro
compiler

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 37

CHALLENGES AND FUTURE PLANS

Challenges
Identify prior art to reuse

Find what is the “correct” way, what idioms
to use

Future plans
Adapt memory plan analysis to add page
in/out ops for handling larger models

Better execution order

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 38

EXPERIENCE WITH MLIR

The MLIR framework made it easy for us to quickly add
optimisations and productise our AI tools

We reuse a lot of code from TensorFlow and the MLIR project

Being able to work at the right level of abstraction is intuitive

May-23
EXTERNAL – PUBLIC

©2023 XMOS Ltd. 39

§ Thank you!

§ deepakpanickal@xmos.com

§ All code is available publicly at

§ https://github.com/xmos/ai_tools

§ https://github.com/xmos/lib_tflite_micro

mailto:deepakpanickal@xmos.com
https://github.com/xmos/ai_tools
https://github.com/xmos/lib_tflite_micro

