Using MLIR to Optimize Basic Linear Algebraic Subprograms

Steven Varoumas

Huawei Technologies Research & Development (UK) Cambridge Research Centre – Compiler Lab

Motivations

Writing libraries is a time consuming task:

- > Many man-hours spent fine-tuning code to achieve best performance.
- > Has to be adapted and optimized for any new hardware.

→ Can we give compilers the task of optimizing libraries that can compete with hand-written ones?

In this work, we intend to generate an optimized math library using compiler technologies.

- > Aim to support the Basic Linear Algebra Subprograms (BLAS) specification.
- > Reduce time taken optimizing/fine-tuning math functions.
- > Automatize creation of hardware-specific code.
- > Leverage the functionalities and extensibility of the MLIR framework.

Objective: Explore what performance results we can get from this approach (expectation: reach 90% of the performance of an in-house hand-tuned BLAS library).

Context: KunpengBLAS library

- BLAS: specification that defines a set of linear algebra functions (e.g. dot product, matrix multiplication).
- Reference implementation of BLAS: KunpengBLAS ("KPL") library (we use the single-thread version).
- Hardware for measurements: Huawei Kunpeng 920 (64bits ARMv8-based processor).
- > We particularly focus on GEMM (General Matrix-Matrix multiplication): performance critical.
 - \rightarrow GEMM is **C** = $\alpha AB + \beta C$ (A, B and C are matrices, α and β are scalars)
 - \rightarrow KPL is able to reach >90% of the theoretical peak of the hardware for sgemm/dgemm:

dgemm (double precision gemm)

Context: GEMM Core Transformations

We rely on the following core transformations:

- > Tiling Apply the operation on subsets (*tiles*) of the matrices.
- > Packing Re-mapping data in the A and B tiles to get sequential memory accesses.

This follows the work of Goto & Van De Geijn [2] to compile an efficient GEMM.

Their use in an MLIR pipeline has been described by Bondhugula [1].

[1] Bondhugula, Uday. "High performance code generation in MLIR: An early case study with gemm." *arXiv:2003.00532* (2020).
 [2] Goto, Kazushige, and Robert A. van de Geijn. "Anatomy of high-performance matrix multiplication." *ACM Transactions on Mathematical Software (TOMS)* 34.3 (2008): 1-25.

Project Overview: Compilation Pipeline

Full pipeline to generate/optimize/compile BLAS functions:

- > A high-level definition of the function is generated directly in the linalg dialect (does not come from a frontend... yet).
- > The generated file is given to an **optimizing MLIR compiler** (*mlirc*), with a list of transformations to apply and their arguments. The optimized functions are packaged into a library (*libblas_mlir.so*).

Multi-Kernel Approach

Transformations may depend on the specific inputs of the function: one set of transformations/parameters is not always good for all possible inputs. For example, packing is not always helpful for small matrices [1].

 \rightarrow We use a multi-kernel approach to enhance each function's performance:

- > For each BLAS function (e.g. gemm), we generate a set of kernels.
- > Kernels are optimized variants of the function, tuned for specific inputs.
- > At runtime, a kernel selector choses the "best" kernel, based on dynamic information.

🖢 HUAWEI

[1] Yang, Weiling, et al. "LIBSHALOM: optimizing small and irregular-shaped matrix multiplications on ARMv8 multi ⁶ cores." Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2021.

Multi-Kernel Approach: Example (axpy)

Using a different kernel for small input vectors and large input vectors gives results consistently >90% of the baseline (KPL) for saxpy (single-precision axpy*):

*axpy is $\vec{y} = \alpha \vec{x} + \vec{y}$ (scalar multiplication + vector addition)

Optimisations (1)

Several optimizations have been implemented at various levels of the pipeline in order to increase performance/functionalities, such as:

High-level optimizations at linalg level:

- > Dimensions of A: MxK, dimensions of B: KxN, dimensions of C: MxN
- > When N<M: reordering C = $(\alpha A)B + \beta C$ into C = $A(\alpha B) + \beta C$ can improve performance:

Optimisations (2)

Support for extensions of BLAS and new transformations:

Example: supporting mixed-precision GEMM (i.e. element types of A, B and C can differ).

- > Easily enabled in MLIR by injecting truncation/extension ops in the MLIR linalg.generic definition.
- > Building on a similar transform for transpose operations, we hoist casting ops into the packing loops of the corresponding matrix:

Optimisations (3)

Optimisations of MLIR code:

Example: hoisting of vector.reduction outside of loops:

HUAWEI

This also applies when the accumulator is a vector (using vector.multi_reduction)

Optimisations (3 – cont.)

Optimisations of MLIR code:

Example: hoisting of vector.reduction outside of loops:

 \rightarrow This optimisation has a significant impact on gemv^{*} (general matrix-vector multiplication):

Handling of Complex Type

To cover the BLAS API, we need to provide operations on complex inputs (cgemv, cgemm, zgemm, ...)

- > High-level definition of the ops in linalg is straightforward: inputs with a complex<t> element type.
- > However, compiling these operations into efficient code poses some problem:
 - Complex tensors are *not* vectorized.
 - The complex dialect lowers to extraction functions (complex.im, complex.re).
 - Our current hardware target supports some ARMv8.3-specific complex vector instructions (e.g. fcmla complex multiply and add).
 - \rightarrow We would like to make use of them, instead of splitting complex values.
 - \rightarrow Existing conversion passes gave us less than 1% of KPL's performance for cgemm.

We considered several options to handle complex operations:

- > Transform complex GEMM into a series of real GEMM (cf. 3m and 4m methods for cgemm [1]).
 - Manual implementation and analysis did not show good performance.
 - Prevents use of complex-specific instructions (fcmla).
 - Not easily extensible to other complex operations.

We considered several options to handle complex operations:

> Transform complex GEMM into a series of real GEMM (cf. 3m and 4m methods for cgemm [1]).

- Manual implementation and analysis did not show good performance.
- Prevents use of complex-specific instructions (fcmla).
- Not easily extensible to other complex operations.
- > Our solution/suggestion (*WIP!*):
 - Support vectorization into vectors of complex<t>.
 - Type conversion of complex ranked types into "doubled" ranked types:

vector<*M*x*N*xcomplex<*t*>> → vector<*M*x*N*x2x*t*>

- Extend vector.contraction/outerproduct with kind=<complexadd>.
- Enable lowering to fcmla in the backend by creating a new fcmuladd intrinsic.
 - → D148068 [AArch64] Lower fused complex multiply-add intrinsic to AArch64::FCMA (llvm.org)

Vector operations are updated accordingly:

```
%cst = complex.constant [0.000000e+00 : f32, 0.000000e+00 : f32] : complex<f32>
%v = vector.transfer_read %t[%c0, %c0], %cst : tensor<?x1xcomplex<f32>>, vector<8x1xcomplex<f32>>
%vt = vector.transpose %v, [1, 0] : vector<8x1xcomplex<f32>> to vector<1x8xcomplex<f32>>
%t3 = vector.transfer_write %vt, %t2[%x, %y, %c0, %c0] : vector<1x8xcomplex<f32>>, tensor<?x?x1x8xcomplex<f32>>
```


%cst = arith.constant 0.000000e+00 : f32
%v = vector.transfer_read %t[%c0, %c0, %c0], %cst : tensor<?x1x2xf32>, vector<8x1x2xf32>
%vt = vector.transpose %v, [1, 0, 2] : vector<8x1x2xf32> to vector<1x8x2xf32>
%t3 = vector.transfer_write %vt, %t2[%x, %y, %c0, %c0, %c0] : vector<1x8x2xf32>, tensor<?x?x1x8x2xf32>

Contraction is done with last two dimensions "flattened":

```
vector<MxNx2xt> \rightarrow vector<Mx2Nxt>
```

 \rightarrow Prevents splitting between real and imaginary values when lowering vectors.

 \rightarrow Adapted to the input expected by ARMv8.3 fcmla: interleaved real and imaginary parts.

%v = vector.contract {(...), kind = #vector.kind<complexadd>} %a, %b, %c : vector<1x8xcomplex<f32>>,
vector<1x4xcomplex<f32>> into vector<8x4xcomplex<f32>>


```
%a1 = vector.shape_cast %a : vector<1x8x2xf32> to vector<1x16xf32>
%b1 = vector.shape_cast %b : vector<1x4x2xf32> to vector<1x8xf32>
%c1 = vector.shape_cast %c : vector<8x4x2xf32> to vector<8x8xf32>
%v0 = vector.contract {(...), kind = #vector.kind<complexadd>} %a1, %b1, %c1 : vector<1x16xf32>,
vector<1x8xf32> into vector<8x8xf32>
%v = vector.shape_cast %v0 : vector<8x8xf32> to vector<8x4x2xf32>
```


Optimisations for Complex Pipeline (1)

Hoisting of vector.shape_cast operations outside of loops:

```
%loop = scf.for %i = %lb to %ub step %step iter_args(%arg = %v) -> (vector<4x4x2xf32>) {
    %c = vector.shape_cast %arg : vector<4x4x2xf32> to vector<4x8xf32>
    %w = (...) : vector<4x8xf32> // use of %c
    %r = vector.shape_cast %w : vector<4x8xf32> to vector<4x4x2xf32>
    scf.yield %r: vector<4x4x2xf32>
}
```

```
%c = vector.shape_cast %v : vector<4x4x2xf32> to vector<4x8xf32>
%loop0 = scf.for %i = %lb to %ub step %step iter_args(%arg = %c) -> (vector<4x8xf32>) {
    %w = (...) : vector<4x8xf32> // use of %c (unchanged)
    scf.yield %w: vector<4x8xf32>
}
%loop = vector.shape_cast %loop0 : vector<4x8xf32> to vector<4x4x2xf32>
```

 \rightarrow This transformation moves vector.shape_cast operations out of the microkernel loop.

Optimisations for Complex Pipeline (2)

"Lifting" vector.transfer_read+vector.shape_cast to tensor.collapse_shape+vector.transfer_read:

%0 = vector.transfer_read %arg0[%c0, %c0, %c0], %arg1 : tensor<1x4x2xf32>, vector<1x4x2xf32> %1 = vector.shape_cast %0 : vector<1x4x2xf32> to vector<1x8xf32>

%0 = tensor.collapse_shape %arg0 [[0], [1, 2]] : tensor<1x4x2xf32> into tensor<1x8xf32> %1 = vector.transfer_read %0 [%c0, %c0], %arg1 : tensor<1x8xf32>, vector<1x8xf32>

> A similar transformation replaces shape_cast+transfer_write with transfer_write+expand_shape.

→ Significant performance improvement (>+50%), as tensor.collapse/expand_shape does not involve data copy, unlike vector.shape_cast.

Handling of Complex Types: Limitations

Genericity:

- > Conversion assumes that the complex type layout fits with complex $< t > \rightarrow 2xt$.
- > Heavily targeted towards specific hardware with specific instructions for complex type (fcmla).

Interface changes:

- > A function taking in a vector<8xcomplex<f32>> now takes in vector<8x2xf32>.
- \rightarrow We use special wrappers at the interface with the packager.
- → Working on extending the complex dialect with casting operations complex<t>→ 2xt and 2xt→complex<t>.

Results: Performance vs KPL (Real GEMM)

Running sgemm/dgemm on Huawei Kunpeng 920, 1000 random points:

Colour (value)	sgemm (single precision)	dgemm (double precision)
Red (0% - 49% of KPL)	None	0.3% of points
Orange (50% - 89% of KPL)	5.6% of points	4.7% of points
Green (90% - 99% of KPL)	92.4% of points	95% of points
Blue (≥100% of KPL)	2% of points	None

处 HUAWEI

Results: Performance vs KPL (Complex GEMM)

Running cgemm/zgemm on Huawei Kunpeng 920, 1000 random points:

Blue (≥100% of KPL)

27% of points

80.8% of points

STANDAWEI 🕹

Conclusion & Future Work

We have leveraged the functionalities of the MLIR framework to:

- > Build a full pipeline to generate optimized functions of a BLAS library.
- > Use a multi-kernel approach able to dynamically adapt to specific inputs.
- > Provide optimizations to achieve results competing with hand-written assembly code.

Ongoing/future work:

- > Connect to a DSL (ALP[1]) that would lower to MLIR and use our pipeline.
 - \rightarrow move beyond simply building a library
- > Fuse operations to improve performance (some promising results for GEMM already).
- > Enable parallelism for a multithread version of the library.
- > Target more diverse hardware.

Thank you.

Backup Slides

Results: Performance vs OpenBLAS

Results: Performance vs OpenBLAS (complex gemm)

Results of cgemm/zgemm (1000 random points):

Zyciiiii

WHUAWEI

Colour (value)	cgemm	zgemm
Orange (50% - 89% of OpenBLAS)	None	0.3% of points
Green (90% - 99% of OpenBLAS)	None	0.1% of points
Blue (100% - 124% of OpenBLAS)	0.3% of points	1.7% of points
Purple (≥125% of OpenBLAS)	99.7% of points	97.9% of points

Results: gemv

92.1% of points >= 90% of KPL

88.7% of points >= 90% of KPL

