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-fbounds-safety
Enforcing bounds safety for production C code
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Memory unsafety is the leading source of security vulnerabilities
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Memory unsafety is the leading source of security vulnerabilities

• Memory safety bugs account for 60-70% of software vulnerabilities 

• High-profile attacks have exploited memory safety bugs leading to financial 
and physical threats
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Memory safety properties

• Bounds safety (or spatial safety)


• Temporal safety (or lifetime safety)


• Type safety


• Definite initialization


• Thread safety
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C does not guarantee memory safety

❌ Bounds safety (or spatial safety)


❌ Temporal safety (or lifetime safety)


❌ Type safety


❌ Definite initialization


❌ Thread safety
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Memory-safe languages provide enhanced safety guarantees

✅ Bounds safety (or spatial safety)


✅ Temporal safety (or lifetime safety)


✅ Type safety


✅ Definite initialization


✅ Thread safety
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Memory-safe languages are increasingly the best choice

• Memory-safe languages have emerged as a promising option for systems 
programming


• Increasingly available for more programming environments


• Incredible initiatives taking place in this domain



Transitioning from C to safe languages takes time

• Billions of lines of C code remain in production


• Efforts to rewrite existing C code using safe languages (e.g., Linux kernel)


• Rewriting requires significant engineering effort and time


• Expect continued maintenance of C code for several more decades
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We need a solution to rapidly harden 
existing C code
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Bounds unsafety is the biggest cause of dangerous vulnerabilities 

2022 CWE Top 25 Most Dangerous Software Weaknesses

Rank Name

1 Out-of-bounds Write

4 Improper Input Validation

5 Out-of-bounds Read

13 Integer Overflow or Wraparound

19 Improper Restriction of Operations within the Bounds of a Memory Buffer
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-fbounds-safety 
C extension for bounds safety
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-fbounds-safety only provides bounds safety
But it offers quicker way to make remaining C code safer

C -fbounds-safety Memory safe languages 
(Swift, Rust, etc.)

Bounds safety (or spatial safety) ❌ ✅ ✅

Temporal safety ❌ ❌ ✅

Type safety ❌ ❌ ✅

Definite initialization ❌ ❌ ✅

Thread safety ❌ ❌ ✅
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Design goals and highlights
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Automatically insert bounds checks as a safety net

• Programmers manually add bounds checks, but sometimes make mistakes


• -fbounds-safety automatically adds bounds checks as a safety net

void fill_array_with_indices(int *buf, size_t count) { 
  for (size_t i = 0; i <= count; ++i) { 
    buf[i] = i; 
  } 
}
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Automatically insert bounds checks as a safety net

• Programmers manually add bounds checks, but sometimes make mistakes


• -fbounds-safety automatically adds bounds checks as a safety net

void fill_array_with_indices(int *buf, size_t count) { 
  for (size_t i = 0; i <= count; ++i) { 
    if (i < 0 || i >= count) trap();
    buf[i] = i; 
  } 
}
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C pointers do not have bounds information
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Potential solution: Use wide pointers
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Potential solution: Use wide pointers

• Analogous to struct with upper/lower bounds alongside the pointer value

typedef struct { 
  int *pointer; 
  int *upper_bound; 
  int *lower_bound; 
} wide_ptr;
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Potential solution: Use wide pointers

• Analogous to struct with upper/lower bounds alongside the pointer value

• a.k.a “fat” pointers

• Allows compiler to automatically insert bounds check

typedef struct { 
  int *pointer; 
  int *upper_bound; 
  int *lower_bound; 
} wide_ptr;
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Problem: Wide pointers break Application Binary Interface (ABI)

your_obj.dylibmy_obj.o
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• Problem interacting with external libraries
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Problem: Wide pointers break Application Binary Interface (ABI)

• Problem interacting with external libraries

• Difficult to incrementally adopt the technique 

foo(int *p);foo(wide_ptr p);

your_obj.dylibmy_obj.o
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Incremental adoption is crucial

• Adoption often requires significant engineering effort


• Adopting on a large project all at once is likely infeasible
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Potential solution: Use bounds annotations

• Require programmers to provide bounds annotation on their code


• e.g., 


• No need to change pointer representation


• Preserves ABI


• Enables incremental adoption

void foo(int *__counted_by(n) buf, int n);
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Potential solution: Use bounds annotations

• Require programmers to provide bounds annotation on their code


• e.g., 


• No need to change pointer representation


• Preserves ABI


• Enables incremental adoption

void foo(int *__counted_by(n) buf, int n);
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Problem: Annotation burden

• Adding annotations on every pointer requires significant programmer effort


• Prevents wide adoption in practice
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-fbounds-safety: Mix them together!
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-fbounds-safety: Mix them together!

• Wide pointers on non-ABI surface


• Lowers annotation burden
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-fbounds-safety: Mix them together!

• Wide pointers on non-ABI surface


• Lowers annotation burden

• Bounds annotations on ABI surface


• Preserves ABI


• Enables incremental adoption
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-fbounds-safety:
Automatic bounds checking with bounds annotations

• Programmers adopt bounds annotations on:


• Function prototypes, struct fields, globals


• Compiler adds guaranteed bounds checks

void fill_array_with_indices(int * 
  for (size_t i = 0; i <= count; ++i) { 

buf, size_t count) {

    buf[i] = i; 
  } 
}
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-fbounds-safety:
Automatic bounds checking with bounds annotations

• Programmers adopt bounds annotations on:


• Function prototypes, struct fields, globals


• Compiler adds guaranteed bounds checks

void fill_array_with_indices(int * 
  for (size_t i = 0; i <= count; ++i) { 

__counted_by(count) buf, size_t count) {

    if (i < 0 || i >= count) trap();
    buf[i] = i; 
  } 
}



Compiler rejects code without sufficient bounds information

• Guides programmers to add necessary bounds annotations


• Securing all pointers by default
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  for (size_t i = 0; i <= count; ++i) { 
    buf[i] = i; 
  } 
}

buf, size_t count) {
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Compiler rejects code without sufficient bounds information

• Guides programmers to add necessary bounds annotations


• Securing all pointers by default

void fill_array_with_indices(int * 
  for (size_t i = 0; i <= count; ++i) { 
    buf[i] = i; 
  } 
}

Array subscript on single pointer ‘buf’ must use a 
constant index of 0 to be in bounds

buf, size_t count) {
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Compiler rejects code without sufficient bounds information

• Guides programmers to add necessary bounds annotations


• Securing all pointers by default

void fill_array_with_indices(int * 
  for (size_t i = 0; i <= count; ++i) { 
    buf[i] = i; 
  } 
}

__counted_by(count) buf, size_t count) {
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-fbounds-safety doesn’t require 
bounds annotations all the time



Local variables are wide by default
Solution to keep bounds annotation burden low

• Compiler implicitly carries bounds for local variables


• No manual annotation is required


• No ABI implications

void foo(int i) { 
  char *buf = (char *)malloc(10); 
  if (buf + i < buf || buf + i >= buf + 10) trap(); // automatically inserted 
  buf[i] = 0xff; 
  // more code ... 
}
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All pointers except locals are single by default

• Most pointers are pointing to a single object


• No need for pointer arithmetic


• No need for bounds information


• Annotation __single is default for all pointers except locals

26
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struct s_t s; 
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All pointers except locals are single by default

• Most pointers are pointing to a single object


• No need for pointer arithmetic


• No need for bounds information


• Annotation __single is default for all pointers except locals
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-fbounds-safety solves challenges for safe C extensions
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Challenge: Preserve source compatibility with C
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Challenge: Preserve source compatibility with C

• Need to build with standard C compilers

• Need compatibility with existing static analysis and code inspection tooling

• Should be adoptable in shared code:

• Library headers

• Open-source projects

• Requirement: Must not introduce new syntax that C compilers don’t 
understand
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Bounds annotations are macro-defined C attributes

• Bounds annotations are syntactically C type attributes


• Do not introduce new syntax


• Bounds annotations are macro-defined


• When defined to empty they are still valid C
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-fbounds-safety solves real-world challenges

• ABI compatibility         


• Incremental adoption


• Low adoption burden


• Source compatibility     

✅

✅

✅
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-fbounds-safety is relatively easy to adopt
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-fbounds-safety is relatively easy to adopt

• Adoption is mostly about annotations in function prototypes and struct fields

• Require relatively less code modification

• Time to adopt: ~ 1 hour per 2,000 LOC (vary depending on codebase)

• Currently, only supports C (Objective-C and C++ are not supported)

• Can mix and match bounds safe and unsafe code

• Allows strategy of incremental adoption
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Adoption at Apple

32



Adoption at Apple

• Adopted in millions of lines of production C code
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Adoption at Apple

• Adopted in millions of lines of production C code

• Libraries used for:

• Secure boot and firmware

• Security-critical components of XNU

• Built-in image format parsers

• Built-in audio codecs

• Found to be effective for real-world applications

32



Programming model

Enforcing bounds safety at language level

Bounds annotations




-fbounds-safety enforces bounds safety at language level
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-fbounds-safety enforces bounds safety at language level

• Prevents out-of-bounds memory accesses via bounds checking
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-fbounds-safety enforces bounds safety at language level

• Prevents out-of-bounds memory accesses via bounds checking

• Prevents pointer operations that cannot be proven safe (or with insufficient 
bounds information)

• Maintains correctness of bounds annotations
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-fbounds-safety prevents unsafe behaviors by …

• Compile-time warning / error when the compiler knows an operation will be 
unsafe


• Run-time checks and traps when behavior cannot be proven safe/unsafe at 
compile time


• Compiler uses its best effort to report errors at compile time



Bounds annotations
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External bounds annotations
Describe relationship between pointer and bounds information

`count` is the element count of `buf`

void fill_array_with_indices(int *__counted_by(count) buf, size_t count) { 
  for (size_t i = 0; i <= count; ++i) { 
    buf[i] = i; 
  } 
}

37



Bounds annotation: __counted_by(N)

• `buf` has `count` elements with the valid range [0, count)


• Can be indexed in a positive direction ➡


• Can be used inside array bracket,.e.g, int arr[__counted_by(count)]

void fill_array_int(int *__counted_by(count) buf, size_t count); 

// example usage 
fill_array_int(array, 10);
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Bounds annotation: __sized_by(N)

• `buf` has `byte_count` with the valid range [0, byte_count)


• Can be indexed in a positive direction ➡

void fill_array_byte(void *__sized_by(byte_count) buf, size_t byte_count); 

// example usage 
fill_array_byte(array, 10 * sizeof(array[0]));
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Bounds annotation: __ended_by(P)

• `end` is the upper bound of `buf` with the valid range [0, end - buf)


• `buf` indexed in a positive direction ➡; `end` in a negative direction ⬅

void fill_array_to_end(int *__ended_by(end) buf, int *end); 

// example usage 
fill_array_to_end(array, &array[10]);
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Maintaining correctness of 
__counted_by
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Updating pointer may invalidate bounds information

void foo(int *__counted_by(count) buf, size_t count) { 
  buf = (int *)malloc(4);
} 
// usage 
foo(buf , 10);
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Updating pointer may invalidate bounds information

• Updating `buf` to point to an object of byte size 4

void foo(int *__counted_by(count) buf, size_t count) { 
  buf = (int *)malloc(4);
} 
// usage 
foo(buf , 10);
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Updating pointer may invalidate bounds information

• Updating `buf` to point to an object of byte size 4

• The count variable is 10 so __count_by annotation becomes invalid

void foo(int *__counted_by(count) buf, size_t count) { 
  buf = (int *)malloc(4);
} 
// usage 
foo(buf , 10);
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Updating pointer may invalidate bounds information

• Updating `buf` to point to an object of byte size 4

• The count variable is 10 so __count_by annotation becomes invalid

void foo(int *__counted_by(count) buf, size_t count) { 

Assignment to 'int * __counted_by(count)' 'buf' 
requires corresponding assignment to 'count'

  buf = (int *)malloc(4);
} 
// usage 
foo(buf , 10);
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Updating pointer may invalidate bounds information

• Updating `buf` to point to an object of byte size 4

• The count variable is 10 so __count_by annotation becomes invalid

void foo(int *__counted_by(count) buf, size_t count) { 
  buf = (int *)malloc(4);

} 
// usage 
foo(buf , 10);

count = 4;
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Updating pointer may invalidate bounds information

• Updating `buf` to point to an object of byte size 4

• The count variable is 10 so __count_by annotation becomes invalid

void foo(int *__counted_by(count) buf, size_t count) { 
  if (4 * sizeof(int) > 4) trap();
  buf = (int *)malloc(4);

} 
// usage 
foo(buf , 10);

count = 4;
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Annotation for C strings: __null_terminated

size_t my_strlen(const char *__null_terminated str); 

// example usage 
size_t ak_len = my_strlen(“abcdefghijk”);
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Annotation for C strings: __null_terminated

• Indicates `str` has the null terminator

size_t my_strlen(const char *__null_terminated str); 

// example usage 
size_t ak_len = my_strlen(“abcdefghijk”);
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Annotation for C strings: __null_terminated

• Indicates `str` has the null terminator

• Ensures that `str` is not accessed beyond the null terminator

size_t my_strlen(const char *__null_terminated str); 

// example usage 
size_t ak_len = my_strlen(“abcdefghijk”);
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__single: pointers to single object

• `p` is pointing to a single valid object (this is the case for most pointers)


• Can NOT be indexed in any direction 🚫

void fill_struct(struct s_t *__single p); 

// example usage 
struct s_t s = {}; 
fill_struct(&s);
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Help us support more use cases 
with your feedback!
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Internal bounds annotations 
Escape hatches that allow to explicitly use wide pointers 
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Internal bounds annotation: __bidi_indexable

void fill_array_internal_bounds(int *__bidi_indexable buf); 

// example usage 
int array[10] = {0}; 
fill_array_internal_bounds(array);
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Internal bounds annotation: __bidi_indexable

• __bidi_indexable turns `buf` into a wide pointer with upper and lower bounds

void fill_array_internal_bounds(int *__bidi_indexable buf); 

// example usage 
int array[10] = {0}; 
fill_array_internal_bounds(array);
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Internal bounds annotation: __bidi_indexable

• __bidi_indexable turns `buf` into a wide pointer with upper and lower bounds

• Can be indexed in both directions ↔ 
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// example usage 
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Internal bounds annotation: __bidi_indexable

• __bidi_indexable turns `buf` into a wide pointer with upper and lower bounds

• Can be indexed in both directions ↔ 

• Changes the pointer representation -> breaks the ABI

• ⚠ Avoid using it on the ABI surface

void fill_array_internal_bounds(int *__bidi_indexable buf); 

// example usage 
int array[10] = {0}; 
fill_array_internal_bounds(array);
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Internal bounds annotation: __indexable

void fill_array_internal_bounds(int *__indexable buf); 

// example usage 
int array[10] = {0}; 
fill_array_internal_bounds(array);
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Internal bounds annotation: __indexable

• `buf` is a wide pointer with upper bound (smaller than __bidi_indexable)

void fill_array_internal_bounds(int *__indexable buf); 

// example usage 
int array[10] = {0}; 
fill_array_internal_bounds(array);
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Internal bounds annotation: __indexable

• `buf` is a wide pointer with upper bound (smaller than __bidi_indexable)

• Can be indexed in a positive direction ➡

void fill_array_internal_bounds(int *__indexable buf); 

// example usage 
int array[10] = {0}; 
fill_array_internal_bounds(array);
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Internal bounds annotation: __indexable

• `buf` is a wide pointer with upper bound (smaller than __bidi_indexable)

• Can be indexed in a positive direction ➡

• Changes the pointer representation -> breaks ABI

void fill_array_internal_bounds(int *__indexable buf); 

// example usage 
int array[10] = {0}; 
fill_array_internal_bounds(array);
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Internal bounds annotation: __indexable

• `buf` is a wide pointer with upper bound (smaller than __bidi_indexable)

• Can be indexed in a positive direction ➡

• Changes the pointer representation -> breaks ABI

• ⚠ Avoid using it on the ABI surface

void fill_array_internal_bounds(int *__indexable buf); 

// example usage 
int array[10] = {0}; 
fill_array_internal_bounds(array);
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Default pointer annotations
Key for ABI compatibility & less manual annotation

• ABI visible pointers         : __single by default


• Non-ABI visible pointers : __bidi_indexable by default


• const char *                     : __null_terminated by default


• Secures all pointers by default


• Preserves ABI compatibility by default


• Doesn’t need manual annotation all the time
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Interoperability w/ bounds-unsafe code 
enables incremental adoption
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__unsafe_indexable: pointers from bounds-unsafe code 
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__unsafe_indexable: pointers from bounds-unsafe code 

• Just like normal C pointers


• Can be indexed in both directions ↔


• No checks are added ❌

// my_system.h 
void *__unsafe_indexable system_function(void *__unsafe_indexable buf); 
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__unsafe_indexable: pointers from bounds-unsafe code 

• Just like normal C pointers


• Can be indexed in both directions ↔


• No checks are added ❌

• Avoid using in bounds-safe code

// my_system.h 
void *__unsafe_indexable system_function(void *__unsafe_indexable buf); 
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__unsafe_indexable: pointers from bounds-unsafe code 

• Just like normal C pointers


• Can be indexed in both directions ↔


• No checks are added ❌

• Avoid using in bounds-safe code

• Default for system headers

// my_system.h 
void *__unsafe_indexable system_function(void *__unsafe_indexable buf); 
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Taking a return value from unsafe code
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Taking a return value from unsafe code

• The model doesn’t allow initializing any safe pointer with an unsafe pointer  

int *safe_buf = unsafe_func(); // error
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Taking a return value from unsafe code

• The model doesn’t allow initializing any safe pointer with an unsafe pointer  

• Use __unsafe_forge_bidi_indexable (T,P,S) to create a __bidi_indexable pointer 
from an __unsafe_indexable pointer

int *safe_buf = unsafe_func(); // error

int *safe_buf = 
  __unsafe_forge_bidi_indexable(int *, unsafe_func(), byte_size_of_buf); // ok
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Taking a return value from unsafe code

• The model doesn’t allow initializing any safe pointer with an unsafe pointer  

• Use __unsafe_forge_bidi_indexable (T,P,S) to create a __bidi_indexable pointer 
from an __unsafe_indexable pointer

int *safe_buf = unsafe_func(); // error

int *safe_buf = 
  __unsafe_forge_bidi_indexable(int *, unsafe_func(), byte_size_of_buf); // ok

Avoid using this intrinsic for any other purposes!  
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Bounds annotation summary

ABI Compatibility Index directions Bounds checks Default for

__counted_by(N) ✅ ➡ ✅

__sized_by(N) ✅ ➡ ✅

__ended_by(N) ✅ ➡ ✅

__null_terminated ✅ 1⃣➡ ✅ const char *

__single ✅ ❌ ✅ Function prototypes / struct 
fields / globals

➡ ✅

↔ ✅ Locals

✅ ↔ ❌ Pointers in system headers

__indexable

__bidi_indexable

❌ (2x bigger)

❌ (3x bigger)

__unsafe_indexable ❌

53



Bounds annotation summary

ABI Compatibility Index directions Bounds checks Default for

__counted_by(N) ✅ ➡ ✅

__sized_by(N) ✅ ➡ ✅

__ended_by(N) ✅ ➡ ✅

__null_terminated ✅ 1⃣➡ ✅ const char *

__single ✅ ❌ ✅ Function prototypes / struct 
fields / globals

➡ ✅

↔ ✅ Locals

✅ ↔ ❌ Pointers in system headers

__indexable

__bidi_indexable

❌ (2x bigger)

❌ (3x bigger)

__unsafe_indexable ❌

53



Bounds annotation summary

ABI Compatibility Index directions Bounds checks Default for

__counted_by(N) ✅ ➡ ✅

__sized_by(N) ✅ ➡ ✅

__ended_by(N) ✅ ➡ ✅

__null_terminated ✅ 1⃣➡ ✅ const char *

__single ✅ ❌ ✅ Function prototypes / struct 
fields / globals

➡ ✅

↔ ✅ Locals

✅ ↔ ❌ Pointers in system headers

__indexable

__bidi_indexable

❌ (2x bigger)

❌ (3x bigger)

__unsafe_indexable ❌

53



Optimization to remove 
redundant bounds checks
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Optimization to remove redundant run-time checks 

• Automatic bounds checks may introduce redundant checks

• LLVM optimizer remove redundant checks

• Primary motivation for the constraint-elimination pass we implement in LLVM

 for (size_t i = 0; i < count; ++i) { 
   if (i < 0 || i >= count) trap(); // automatically added bounds checks 
   buf[i] = i; 
}
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Constraint elimination to remove redundant checks

• Collect known conditions through CFG


• Remove redundant checks based on the known conditions


• Fewer checks will be inserted if the code already has most of the necessary 
bounds checks

 for (size_t i = 0; i < count; ++i) { 
// known fact: 0 <= i < count 

  
    buf[i] = i; 
}

if (i < 0 || i >= count) trap(); // <- always `false`
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• Fewer checks will be inserted if the code already has most of the necessary 
bounds checks

 for (size_t i = 0; i < count; ++i) { 
// known fact: 0 <= i < count 

  
    buf[i] = i; 
}

if (0) trap(); // <- always `false`
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Constraint elimination to remove redundant checks

• Collect known conditions through CFG


• Remove redundant checks based on the known conditions


• Fewer checks will be inserted if the code already has most of the necessary 
bounds checks

 for (size_t i = 0; i < count; ++i) { 
// known fact: 0 <= i < count 

  
    buf[i] = i; 
}
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Performance impact
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Benchmark results
w/ Ptrdist and Olden benchmark suites

• Pointer-intensive benchmark suites used by other related approaches


• Did not adopt two benchmarks, one in Ptrdist and one in Olden
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Benchmark results
w/ Ptrdist and Olden benchmark suites

• LOC changes: 2.7% (0.2% used unsafe constructs)

• Much lower than prior approaches

• Compile-time overhead: 11%

• Code-size (text section) overhead: 9.1% (ranged -1.4% to 38%)

• Run-time overhead: 5.1% (ranged -1% to 29%)

• Tend to rely more on run-time checks with benefit of lower adoption cost

• Can be improved with optimization improvements
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System-level performance impact

• Measurement on iOS


• 0-8% binary size increase per project


• No measurable performance or power impact on boot, app launch


• Minor overall performance impact on audio decoding/encoding (1%)


• System-level performance cost is remarkably low and worth paying for 
the security benefit

60



Acknowledgments

• Félix Cloutier


• Patryk Stefanski


• Dan Liew


• Henrik Olsson


• Florian Hahn


• Devin Coughlin


• Filip Pizlo

61



-fbounds-safety is coming to LLVM community

62



-fbounds-safety is coming to LLVM community

• -fbounds-safety is a bounds safe C extension widely adopted in shipping software 
running on all Apple platforms, offering:

62



-fbounds-safety is coming to LLVM community

• -fbounds-safety is a bounds safe C extension widely adopted in shipping software 
running on all Apple platforms, offering:

• ABI compatibility

62



-fbounds-safety is coming to LLVM community

• -fbounds-safety is a bounds safe C extension widely adopted in shipping software 
running on all Apple platforms, offering:

• ABI compatibility

• Incremental adoption

62



-fbounds-safety is coming to LLVM community

• -fbounds-safety is a bounds safe C extension widely adopted in shipping software 
running on all Apple platforms, offering:

• ABI compatibility

• Incremental adoption

• Moderate annotation burden

62



-fbounds-safety is coming to LLVM community

• -fbounds-safety is a bounds safe C extension widely adopted in shipping software 
running on all Apple platforms, offering:

• ABI compatibility

• Incremental adoption

• Moderate annotation burden

• Source compatibility with C

62



-fbounds-safety is coming to LLVM community

• -fbounds-safety is a bounds safe C extension widely adopted in shipping software 
running on all Apple platforms, offering:

• ABI compatibility

• Incremental adoption

• Moderate annotation burden

• Source compatibility with C

• Planning to upstream and standardize the language model

62



-fbounds-safety is coming to LLVM community

• -fbounds-safety is a bounds safe C extension widely adopted in shipping software 
running on all Apple platforms, offering:

• ABI compatibility

• Incremental adoption

• Moderate annotation burden

• Source compatibility with C

• Planning to upstream and standardize the language model

• RFC is coming soon — we are very excited to get your feedback!
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