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A system programming language for 
heterogenous computing



•

•

•

•

•

•

Pythonic system programming language
Driving SoTA in compiler and language design
Forget everything you know about Python! :-)

One year old and still in development
Freely available on Linux, Mac and Windows
Full LLVM-based toolchain + VSCode LSP support
Full emoji file extension support

Launched in May, already growing a 
vibrant community:

150K users overall, 22K+ users on Discord

Well funded, long term commitment

Mojo      at a glance

https://docs.modular.com/mojo/community.html
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Why Modular, Why Mojo       ?



If AI is so important, why is all the 
software infrastructure so bad?



What's wrong with AI* Infrastructure?

Building and deploying models requires dozens of 
translators, deployment systems, quantization tools, 
vendor specific compilers and kernel libraries!

•

•

•

Why?
No one has time to start from first principles
Organizational politics / incentive structures
Solving this is really hard!

We need fewer things, that work better!

*Note: We use "AI" as an abbreviation for “distributed heterogeneous compute” systems
 





Unify AI from the Bottom Up

•

•

Meet AI developers where they are
Drop in compatible with PyTorch, JAX, and TensorFlow
Few AI devs want to rewrite their models

"AI Engine"

ML Ops

ML Training 
Frameworks

HW Deployment 
Systems

AI 
Software 

Stack

 

•
•

A next generation “AI Engine” to unify the world
Unify hardware, algorithms, and frameworks
We’ve been on this quest for many years!

•
•
•

Not a research project
Much has been learned over the last ~8 yrs of AI infra
Bring best-in-class techniques into one system
First principles design + aligned team of experts

https://blog.tensorflow.org/2019/04/mlir-new-intermediate-representation.html
https://docs.google.com/presentation/d/1ZMtzT6nmfvNOlIaHRzdaXpFeaAklcT7DvfGjhgpzcxk/edit#slide=id.p


What is an AI Engine? 

Network

Load Data
Embedding 

Lookup

CPU

Matmul Relu

GPU / Accelerator

Post 
Processing

CPU Network

•

•

A declarative "operator graph" - sometimes small subgraphs
enables transformation over the compute itself

Manages distributed heterogeneous compute:
This is more than just software for a single accelerator



AI Engine Evolution 

Hand Coded Kernel Libraries

Conv+Relu+Add​

MatMul

ML Compilers

Add

MatMul

Max

0

Conv

Fusion Region

Neither approach scales!



Challenges with ML Compilers



Generality!
•
•
•
•
•
•

Many common limitations…
Dynamic shapes
Sparsity
Quantization
Custom ops
Embedded support
Model coverage

 

"Generality is, indeed, an 
indispensable ingredient of 
reality; for mere individual 
existence or actuality 
without any regularity 
whatever is a nullity. Chaos 
is pure nothing.

- Charles Sanders Peirce
•

•

Hard to invest in this when funded 
by HW enablement project:

AI is an end to end parallel compute problem, 
not just an accelerated matmul problem

Hardware-first software drives AI fragmentation



Difficult to hire compiler engineers …

Community

•

Re-encoding all of computing into 
"IR Builders" doesn't scale

We need to bring programmability back to AI!

•
•
•

… who have AI modeling experience, and

… who know exotic numerics, and

… who know specialized HW details ​

AI Research cannot rely on:
"compiler engineer in-the-loop"!



Language + Developer Fragmentation

 Model

CUDA (and others)Hardware

 System

How can you co-optimize host and accelerator code in different languages?



Mojo's Design Approach
Building a new language is a lot of work!



 

Can late bind to EDSL, language, etc. 
 
Many options exist if the core tech 
investment works out

For a de-risk, we don’t care 
about syntax!

03

 

Metaprogramming, generalized 
fusion, autotuning, integrated 
caching, distributed compilation, 
unconventional use of LLVM, etc

Prove integration of novel next-
generation compiler features

02

 

Demonstrate rapid architectural 
generality without performance loss
 
Both µbenchmark and end-to-end

Prove we can beat SoTA kernels 
on a wide range of hardware

01

Initial goal: De-risk our core hypothesis



"Compiler first" design approach

•
•

Build the compiler codegen strategy + unrelated parts of AI Engine
Validated by writing MLIR directly, allowing us to iterate rapidly
MLIR makes it very easy to prototype and build novel compilers

No Parser /

Frontend!

      Novel MLIR-based

compiler​

 

Hardware

Hardware

Hardware

        LLVM

•
•

We succeeded!
Beat SoTA kernel libraries / vendor compilers on key workloads
Re-learned how painful it is to write large amounts of MLIR by hand



Time for Syntax! What approach?

•
•
•

We need to evaluate tradeoffs between:
an existing language - e.g. C++ or Swift or Julia
an EDSL in Python or C++
a new, invented, language

•

•

Start from our goals:
Enable usability, for our fancy compiler technology
Meet AI devs where they are: in Python (doom voice)

Python drives the requirement: no C++/Swift/Julia/etc



 

 

Why not an Embedded DSL (EDSL) ?

☑

☑

☑

Many EDSLs in Python & C++ exist, because:
Much lower cost to produce than a full language
Don’t need to implement language tooling
Fast time to market

Our goals require full-stack innovation (including 
the host) and aim for best usability!

☑

☑

Challenges with EDSLs:
Poor usability, poor tooling, poor debugging
Can't extend/fix the host language



 

•

•

Only way to deliver the best quality result 
A native tools experience, debugger etc
Full generality for host CPUs: Python won't cut it

 

Build a new language?

Ridiculously expensive to do right!

•

•

•

•

•

However, this requires:
Consistent vision
Long term commitment
Funding for the development
Ability to attract specialized talent
Big target market of developers

Mojo🔥 provides full VSCode / LSP support,
REPL, Jupyter, and (shipping soon) LLDB Debugger



However, this requires:
      Consistent vision
      Long term commitment
      Funding for the development
      Ability to attract specialized talent
      Big target market of developers

 

Build a new language!

•

•

Only way to deliver the best quality result 
AI developers are really important to the world
We’re tired of point solutions, research-quality 
tools, flashy demos that don’t generalize

 
Clang

We have done this before:



 
Unlock the full power of MLIR​

Fancy compiler tech like autofusion

Support the needs of the AI engine​

Expose Modular’s next-
generation compiler technology

03

 
Work backward from unlocking HW - 
not forward from legacy Python

Anything with a program counter (PC)

Focused on performance & 
systems programming

02

 
Give superpowers to Python coders

Will grow into a “Python++” superset 
over time (no “Python 4” fragmentation)

Member of the Python 🐍 family

01

Mojo       design points



Mojo      Internals 101
Core elements of the language + compiler



 

A programming 
language for 

MLIR?



Computers are complicated!

•

Are type systems solved? Look at floating point!
F16, BF16, F32, F64, and maybe F80 … right?

We need syntactic sugar for MLIR!

EVERYTHING THE

… MLIR CAN SOLVE

LIGHT  TOUCHES…

•

•

•

•

•

What about:
Float8E5M2

Float8E4M3FN

Float8E5M2FNUZ

Float8E4M3FNUZ

Float8E4M3B11FNUZ!

What about tiled accelerators?



A library-first language 📚

•

•

•

•

•

C++ has an odd historical design
double is built-in to language
std::complex is a library

Goal: Push language design into libraries!
Extend without changing the compiler
Reduce engineering effort 👷🏽‍♀️
Talk to all the weird hardware 🔨

A enormous opportunity!



Python 🐍 to the rescue!

class Int:

    def __init__(self, value):

        self.value = value

 

    def __add__(self, rhs): ...

 

    def __lt__(self, rhs): ...

 



 

+

MLIR

struct Int:

    var value: __mlir_type.index

 

    fn __add__(self, rhs: Int) -> Int:

        return __mlir_op.`index.add`(self.value, rhs.value)

 

    fn __lt__(self, rhs: Int) -> Bool:

        return __mlir_op.`index.cmp`[

              pred = __mlir_attr.`#index<cmp_pred slt>`

        ](self.value, rhs.value)

 

Syntactic sugar for MLIR



Zero cost abstractions

•

•

•

•

Trivial
Bag of bits

@register_passable

Lives in SSA registers

@always_inline("nodebug")

No function call overhead
No generated debug info

 
@register_passable("trivial")

struct Bool:

    var value: __mlir_type.i1

 
    @always_inline("nodebug")

    fn __and__(self, rhs: Bool) -> Bool:

        return __mlir_op.`arith.andi`(

            self.value, rhs.value)

 



Putting it together

var i = 0

while i < 10:

  print(i)

  i += 1

%i = lit.varlet.decl "i" : !lit.ref<mut !Int, *"`i0">

%0 = kgen.param.constant: !Int = <{value = 0}>

lit.ref.store %0, %i : <mut !Int, *"`i0">

hlcf.loop {

  %1 = lit.ref.load %i : <mut !Int, *"`i0">

  %2 = kgen.param.constant: !Int = <{value = 10}>

  %3 = kgen.call @Int::@__lt__(%1, %2)

  %4 = kgen.call @Bool::@__mlir_i1__(%3)

  hlcf.if %4 {

    hlcf.yield

  } else {

    hlcf.break

  }

 

  %5 = lit.ref.load %i : <mut !Int, *"`i0">

  kgen.call @print(%5)

  %7 = kgen.param.constant: !Int = <{value = 1}>

  kgen.call @Int::@__iadd__(%i, %7)

  hlcf.continue

}

 

%idx0 = index.constant 0

%idx10 = index.constant 10

%idx1 = index.constant 1

hlcf.loop (%arg2 = %idx0 : index) {

  %0 = index.cmp slt(%arg2, %idx10)

  hlcf.if %0 {

    hlcf.yield

  } else {

    hlcf.break

  }

  %1 = kgen.call @print(%arg2)

  %2 = index.add %arg2, %idx1

  hlcf.continue %2 : index

}
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Bring your own Dialect struct Shape:

    var value: __mlir_type.`!mosh.ape`

 

    fn __add__(self, rhs: Self) -> Self:

        return __mlir_op.`mosh.concat`(

            self.value, rhs.value)

 

    fn __getitem__(self, n: Int) -> Int:

        return __mlir_op.`mosh.get_dim`(

            self.value, n.value)
•

Zero-cost MLIR wrappers form bottom 
layer of Mojo 

Syntactic sugar 🍭 for MLIR
Reusable MLIR front-end



EDSLs in Mojo for MLIR dialects! 

 

kgen.generator @matmul_like_fw(

    %arg0: !mosh.ape, %arg1: !mosh.ape) 

    -> !mosh.ape {

  %idx-1 = index.constant = -1

  %idx0 = index.constant = 0

  %idx-2 = index.constant = -2

  %0 = mosh.slice(%arg0)[%idx0, %idx-2]

  %1 = mosh.get_dim(%arg0)[%idx-2]

  %2 = mosh.get_dim(%arg1)[%idx-1]

  %3 = mosh.new(%1, %2)

  %4 = mosh.concat(%0, %3)

  kgen.return %4 : !mosh.ape

}

fn matmul_like_fw(sh_a: Shape, sh_b: Shape)

           -> Shape:

    return sh_a.slice(0, -2) + 

           Shape(sh_a[-2], sh_b[-1])



EDSLs in Mojo for MLIR dialects! 

 

kgen.generator @matmul_like_fw(

    %arg0: !mosh.ape, %arg1: !mosh.ape) 

    -> !mosh.ape {

  %idx-1 = index.constant = -1

  %idx0 = index.constant = 0

  %idx-2 = index.constant = -2

  %0 = mosh.slice(%arg0)[%idx0, %idx-2]

  %1 = mosh.get_dim(%arg0)[%idx-2]

  %2 = mosh.get_dim(%arg1)[%idx-1]

  %3 = mosh.new(%1, %2)

  %4 = mosh.concat(%0, %3)

  kgen.return %4 : !mosh.ape

}

fn matmul_like_fw(sh_a: Shape, sh_b: Shape)

           -> Shape:

    return sh_a.slice(0, -2) + 

           Shape(sh_a[-2], sh_b[-1])

Bonus: all the language tooling just works



Compile Time 
Metaprogramming



Hardware generality / single-source-of-

truth

Kernel parameterization over vector 

length, unroll factor, tile factor, …


C++ templates?
- Meta-lang != actual lang 😵‍💫
- Bad error messages 🤬
- Not powerful enough 😫

kgen.generator @microkernel<width>(

    %x: !pop.simd<f32, width>) -> !pop.simd<f32, width> {

  ... 

}

 

kgen.generator @kernel(

    %in: !kgen.pointer, %out: !kgen.pointer,

    %size: index) {

  kgen.param.search width = <[2, 4, 8, 16, 32]>

  %step = kgen.param.constant = <width>

  scf.for %i = 0 to %size step %step {

    %x = pop.simd_load %in[%i] : <f32, width>

    %0 = kgen.call @microkernel<width>(%x)

    pop.simd_store %0 to %out[%i] : <f32, width>

  }

  kgen.return

} 🤔

Mojo      needs …



•

•

•

Powerful metaprogramming:
Decorators
Metaclasses
Reflection

Mojo      needs …

But … Runtime based is slow - it will never run on the 
accelerator!

💡 Let's do it at compile time! 💡

… what Python 🐍 has



Mojo Parameter Syntax

# "alias" declaration -> parameter

alias Float32 = SIMD[DType.f32, 1]

# Struct with parameters

struct SIMD[dtype: DType, width: Int]:

    ...

  
# Bind function parameters to type

fn first_class_simd[width: Int](

    x: SIMD[DType.float32, width]):

  pass

 
 

~= C++ templates



   

Meta-language = actual language

MLIR interpreter for a stack-based programming language
(Tuesday’s MLIR workshop)

MLIR interpreter with 
memory model for 
compile-time code 
evaluation

03

Almost any user-defined 
type can be used at 
compile time

02

Mojo’s metaprogramming 
language is just Mojo 🔥

01

39

http://tbh/


fn fill(lb: Int, ub: Int) -> Vector[Int]:

    var values = Vector[Int]()

    for i in range(lb, ub):

        values.append(i)

    return values

 

fn comptime_vector():

    alias vec = fill(15, 20)

    for e in vec: print(e)

Function can be called at either 
compile or run time

Vector with heap 
allocationVector computed at 

compile-time… 
used at runtime!
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Mojo      does not 
"instantiate" in its parser!

fn print_int[value: Int]():

    print(value)

kgen.generator @print_int<value>() {

  %0 = kgen.param.constant = <value>

  kgen.call @print(%0)

  kgen.return

}

Source Code

Parametric, 

Portable IR

Elaborator

Optimized 

Target IR

LLVM IR

Target 
Agnostic

Target 
Specific



 

Elaboration Pass

kgen.generator @main() {

  kgen.call @print_int<42>()

  kgen.call @print_int<2023>()

}

 
 

kgen.func @"print_int,value=42"() {

  %0 = kgen.param.constant = <42>

  kgen.call @print(%0) 

}

 

kgen.func @"print_int,value=2023"() {

  %0 = kgen.param.constant = <2023>

  kgen.call @print(%0)

}

 

 

 

kgen.func @main() {

  kgen.call @"print_int,value=42"() 

  kgen.call @"print_int,value=2023"() 

}
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Autotuning!

# Vector-length agnostic function...

fn microkernel[width: Int](x: SIMD[DType.f32, width]) 

    -> SIMD[DType.f32, width]): ...

 

fn kernel(in: ..., out: ..., size: Int):

    # Best vec length? Let Mojo decide!

    alias width = autotune(2, 4, 8, 16, 32)

    for i in range(0, size, width):

        microkernel(in.simd_load[width](i))
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Performance problems with C++ templates

Passing by const& for generality

template<typename T>

T add(const T &lhs, const T &rhs) {

  return lhs + rhs;

}

  

Bad for performance for trivial types!
(When not inlined)

int x = ...

int y = ...

z = add(x, y);

Trivial arguments pinned to the stack

%1 = alloca i32

%2 = alloca i32

store i32 %x, i32* %1

store i32 %y, i32* %2

%z = call i32 @_Z3addRKiS0_(i32* %1, i32* %2)

int add(const int &lhs, const int &rhs) {

  return lhs + rhs;

}

  

HeavyString add(const HeavyString &lhs,

                const HeavyString &rhs) {

  return lhs + rhs;

}
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kgen.func @"add,T=String"(

    %out: !kgen.pointer<!String>

    %lhs: !kgen.pointer<!String>,

    %rhs: !kgen.pointer<!String>) {

  kgen.call @String::@__add__(

      %out, %lhs, %rhs)

}

 

kgen.func @"add,T=Int"(

    %lhs: index, %rhs: index) -> index {

  %0 = index.add %lhs, %rhs

  kgen.return %0 : index

}

fn add[T: Addable](

    lhs: T, rhs: T) -> T:

return lhs + rhs

•

@register_passable types are promoted 
during elaboration!

Dovetails with borrow conventions

Late ABI Lowering
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Mojo     
CodeGen 

Architecture
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Driven by OrcJIT
Lazy demand-driven compilation enables 
responsive tooling

Each compilation phase is an OrcJIT 
materialization layer with caching

Powers autotuning, REPL+ Jupyter, LLDB 
exprs eval

E.g. mojo run my_file.🔥 

lookup(“main“)

Source Level IR

Parametric, 

Portable IR

Optimized IR

LLVM IR

Object Code



OrcJIT … as a static archive generator

.📦                 .

.📦                 .

.📦                 .

.📦                 .

.o

.o

.o

.o

ObjectLinkingLayer

.o.     

.exe .a
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Architecturally portable 
code 📦

 

Source MLIR 
Bytecode

Object Code Object Code Object Code

Optimized 
Bytecode

Optimized 
Bytecode

Optimized 
Bytecode

Pre-elaboration portable 
MLIR bytecode

•

Mojo      can ship portable IR in packages 
without source code!

Parametric bytecode is a much better 

“precompiled header”

 
Packages may optionally contain target-
specific IR and “fat” object code for multiple 
targets
 



 

Compilation with 
Packages

 

Source MLIR 
Bytecode

Object Code

Optimized Bytecode

Pre-elaboration portable 
MLIR bytecode

foo.📦
main.     

Source 

Level IR

Parametric, 

Portable IR

LLVM IR

Optimized IRAt each phase, pull in the pre-
processed IR instead of re-
running passes.
 
Optimized IR from package is 
tossed before LLVM lowering

from foo import bar

 
fn main():

    bar()



LLVM IR, used
unconventionally 😏​
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We love             , but the LLVM 
optimizer… has problems

•

•

•

Single-threaded LLVM IR optimizer
100x slowdown on emerging / modern machines

 
Weak and unpredictable loop optimizer

High performance relies on control and 
predictability
Want to autotune loop optimization parameters

 
Some stuff built for Clang🔔 doesn’t apply to 
Mojo

Good news!             to the rescue!

fn kernel[vec_len: Int](

    in: ..., out: ..., size: Int):

 
    # Autotune the unroll factor!

    alias factor = autotune(1, 2, 4)

 
    @unroll(factor)

    for i in range(0, size, vec_len):

        ...
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LLVM … the good parts

•
•
•

•
•

•
•

LLVM is good for:
GVN, Load/Store Optimization, LSR, etc
scalar optimization (e.g. instcombine)
target-specific code generation

 
We need to disable:

Vectorizer, loop unroller, etc
Inliner and other IPO passes

 
Solution: replace these!

Build new MLIR passes
Replace others with Mojo libraries



 

 

 

LLVM as a per-function 
code generator!

•
•

•
•

New MLIR passes
Fast, parallel, controlled
Parameterized / elaboratable

 
One LLVMContext per-function

Parallelism!
Easy caching!

 

.📦

.📦

.o

.o

.o

.o

llvm-opt+llc

llvm-opt+llc

llvm-opt+llc

.o

.o

.o

.exe

Optimized IR
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So much more …
•
•
•
•
•
•
•
•
•
•
•
•
•
•

CPython interoperability
Parameter design in MLIR
Lifetimes, ownership and early destruction
Keyword arguments and parameters
Function auto-parameterization
@value decorator and value semantics
Cross compilation, GPU programming
REPL and Jupyter notebook
LSP server, vscode plugin, code completion
First class LLDB integration
Compile time IR reflection
Mojo Concurrency model
Traits and static polymorphism
…



Mojo      for High Performance
The need for speed



A look at existing 
performance 
libraries
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Whatever it takes for performance
… at the cost of suffering for performance engineers



Write in 
Assembly!
Please, no…



C++ Templates

Source: Composable Kernels
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C++ DSL for ASM

Source: OneDNN
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Python program to generate ASM 

Source: Tensile
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Python template to generate C++ 

Source: XNNPack
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And these are just some of  
the production libraries you 
might have used today!



You lose on so much
Maintainability, debugging, tooling,  …



Hackability has suffered with
binary library distributions

•

•

•

•

•

Libraries contain the program semantics and 
hardware specifics

 
Higher level compilers (e.g. graph compilers) 
cannot reason about them

 
Users cannot extend them and hardware 
vendors cannot retarget them

 
You end up with point-solutions (Conv + 
Activation+enum) of stamped popular 
patterns

 
No consistent API, distribution story, …



This is why we built



Let's help the developer
•

•

•

•

•

•

Put optimizations into the library rather 
than the compiler

 
Leverage humans for what they are good 
at and computers where they are good at

Computers are great for searching - can be 
brute force or intelligent
Search for right parameters or combination 
of algorithms
Search can be distributed across N 
machines

 
Give them the tools to be productive



•
•
•

Parametric on width and type
Scalars are SIMD type with a width of 1
All math functions work on SIMD elements

SIMD is a core type
• Built in from the beginning making it more usable 

and natively accessible

Parallelism and asynchrony

Let's help the developer



Power to the developer

•

•
•

•

The full power of the silicon is available 
in Mojo:

Access to all hardware intrinsics in 
LLVM and MLIR
Ability to write inline assembly
Target any LLVM/MLIR backend

 
Mojo is a general purpose 
programming language

Not limited in any way to “just AI”



Implementing compiler infrastructure 
in Mojo      as libraries



Mojo uses MLIR core, 
but few standard dialects

•

•
•
•
•

We use LLVM and index dialect:
do not use arith, vector, affine, MemRef, Linalg, etc

 
Several reasons:

They are not always production quality
They do not always have full coverage
These often have complex interdependencies
Lowering is not always target hardware aware

 
Functionality is implemented in Mojo code as 
libraries
 



Vector reduction in Mojo

struct SIMD[type: DType, width: Int]:

    ...

    fn reduce_max(self) -> SIMD[type, 1]:

        @parameter

        if size == 1:

            return self[0]

        elif is_x86():

            ...
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Vector reduction in Mojo
    ...

    elif is_x86():

        fn reduce[type: DType, width: Int](val: SIMD[type, width]) -> SIMD[type, 1]:

            @parameter

            if size == 1:

                return val[0]

            elif size == 2:

                return max(val[0], val[1])

 

            alias half_width = width // 2

            let lhs = val.slice[half_width](0)

            let rhs = val.slice[half_width](half_width)

            return max(lhs.reduce_max(), rhs.reduce_max())

 

        return reduce(self)

    elif type.is_floating_point():

      ...
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    ...

    elif is_x86():

        ...

    elif type.is_floating_point():

        return llvm_intrinsic["llvm.vector.reduce.fmax"](self)

    elif type.is_unsigned():

        return llvm_intrinsic["llvm.vector.reduce.umax"](self)

    else:

        return llvm_intrinsic["llvm.vector.reduce.smax"](self)

 

Vector reduction in Mojo
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Compare that to …
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Writing transforms as library functions

fn vectorize[simd_width: Int,

             func: fn[width: Int](Int) capturing -> None](size: Int):

    # Process a simd_width at a time.

    for i in range(0, size, simd_width):

        func[simd_width](i)

 

    # Handle left-over elements with scalars.

    for i in range(simd_width * (size // simd_width), size):

        func[1](i)
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You can develop point-
solutions for important 
specific problems.
 

03

 

You can invent new 
optimizations that do not 
exist in the compiler.

02

 

You do not have to know 
what a dialect is or use 
TableGen.

01

What does this mean to the developer?
Performance engineers don’t need to be compiler engineers



Mojo      Performance Results



Mandlebrot
Mojo       is 68,000x times 
faster than Python 🐍

Read our blog on this now!

    var in_set_mask: SIMD[DType.bool, simd_width] = True

    for i in range(MAX_ITERS):

        if not in_set_mask.reduce_or():

            break

        in_set_mask = z.squared_norm() <= 4

        iters = in_set_mask.select(iters + 1, iters)

        z = z.squared_add(c)

    return iters

 



Mandelbrot performance
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Matrix Multiplication

•

•
•
•

•

•

Studied extensively since the 60s
In 2023 there were 2k papers on GEMM

 
Optimal codegen is µarch dependent

Size of L$
Number of ports
Types of instructions available

 
Core part of LAPACK and ML workloads

Hardware companies are incentivized to optimize 
performance for benchmarks
Part of core business for some companies

 
Libraries have been in development for decades



 

Goals for Matmul in Mojo
•
•
•
•
•

•

•

Single source of truth
Competes with SotA
No assembly/C++/…
Amenable to fusion
Works on dynamic shapes, can also be 
specialized
Works across all CPU architectures 
(VNNI, AVX512, NEON, AVX2, …)
Supports packing, different transpose 
modes, ... 

​

… our core hypothesis from the beginning!



Matmul performance

Fully dynamic, no pre-packing, and no inlined assembly!

1.46x faster than OneDNN on Intel

Read blog post here
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Matmul performance
1.6x faster than SotA on AMD

Read blog post here

Read blog post here
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Matmul performance
1.2x faster than RUY on ARM

Read blog post here

Read blog post here

Read blog post here
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Toy tiled Matmul implementation
fn matmul(C: Matrix, A: Matrix, B: Matrix):

    fn calc_row(m: Int):

        fn calc_tile[tile_x: Int, tile_y: Int](x: Int, y: Int):

            for k in range(y, y + tile_y):

                fn dot[nelts: Int](n: Int):

                   C.store[nelts](m,n+x, 

                         C.load[nelts](m,n+x) + A[m,k] * B.load[nelts](k,n+x))

 

               vectorize_unroll[nelts, tile_x // nelts, dot](tile_x)

 

        # Let Mojo pick the best tile size!

        alias tile_size = autotune(1, 2, 4, 8, 16, 32)

        tile[calc_tile, nelts * tile_size, tile_size](A.cols, C.cols)

 

    parallelize[calc_row](C.rows, C.rows)
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Hypothesis validated
We can build high performance portable libraries



Less suffering
With Mojo you get performance and 
generality in a production language



Mojo      Roadmap



Mojo       Development 
Roadmap

•
•

Mojo is useful but still not done:
Many features in development

Prioritizing quality over time to market

 
New releases roll out every few weeks
Read our Public Roadmap!

https://docs.modular.com/mojo/roadmap.html


Open Source?

•
•
•
•
•

Many contributions to LLVM upstream:

 

MLIR Bytecode serialization
MLIR Resources
MLIR debug info support
MLIR index dialect
MLIR interpreter (soon?)

We will start opening Mojo        itself 
later this year!
 
Read more details here

https://docs.modular.com/mojo/faq.html#open-source


Mojo       + 
Modular AI  Engine = ❤️‍🔥

•

•
•

Mojo unlocks programmability for any one 
device:

… and communities of developers
 
AI Engine unlocks heterogeneous computers:

Distributed, asynchronous, accelerated
Rapidly evolving architectures

More technical details at:

Workshop on ML for Systems at NeurIPS

http://mlforsystems.org/


 

Download Now
https://www.modular.com/mojo

https://www.modular.com/mojo

