
020C13

A system programming language for
heterogenous computing

•

•

•

•

•

•

Pythonic system programming language
Driving SoTA in compiler and language design
Forget everything you know about Python! :-)

One year old and still in development
Freely available on Linux, Mac and Windows
Full LLVM-based toolchain + VSCode LSP support
Full emoji file extension support

Launched in May, already growing a
vibrant community:

150K users overall, 22K+ users on Discord

Well funded, long term commitment

Mojo at a glance

https://docs.modular.com/mojo/community.html

Agenda

02 Mojo Design Approach

03 Mojo Internals 101

04 Mojo + Accelerated Compute

05 Looking ahead

01 Why Modular, Why Mojo?

Why Modular, Why Mojo ?

If AI is so important, why is all the
software infrastructure so bad?

What's wrong with AI* Infrastructure?

Building and deploying models requires dozens of
translators, deployment systems, quantization tools,
vendor specific compilers and kernel libraries!

•

•

•

Why?
No one has time to start from first principles
Organizational politics / incentive structures
Solving this is really hard!

We need fewer things, that work better!

*Note: We use "AI" as an abbreviation for “distributed heterogeneous compute” systems

Unify AI from the Bottom Up

•

•

Meet AI developers where they are
Drop in compatible with PyTorch, JAX, and TensorFlow
Few AI devs want to rewrite their models

"AI Engine"

ML Ops

ML Training
Frameworks

HW Deployment
Systems

AI
Software

Stack

•
•

A next generation “AI Engine” to unify the world
Unify hardware, algorithms, and frameworks
We’ve been on this quest for many years!

•
•
•

Not a research project
Much has been learned over the last ~8 yrs of AI infra
Bring best-in-class techniques into one system
First principles design + aligned team of experts

https://blog.tensorflow.org/2019/04/mlir-new-intermediate-representation.html
https://docs.google.com/presentation/d/1ZMtzT6nmfvNOlIaHRzdaXpFeaAklcT7DvfGjhgpzcxk/edit#slide=id.p

What is an AI Engine?

Network

Load Data
Embedding

Lookup

CPU

Matmul Relu

GPU / Accelerator

Post
Processing

CPU Network

•

•

A declarative "operator graph" - sometimes small subgraphs
enables transformation over the compute itself

Manages distributed heterogeneous compute:
This is more than just software for a single accelerator

AI Engine Evolution

Hand Coded Kernel Libraries

Conv+Relu+Add​

MatMul

ML Compilers

Add

MatMul

Max

0

Conv

Fusion Region

Neither approach scales!

Challenges with ML Compilers

Generality!
•
•
•
•
•
•

Many common limitations…
Dynamic shapes
Sparsity
Quantization
Custom ops
Embedded support
Model coverage

"Generality is, indeed, an
indispensable ingredient of
reality; for mere individual
existence or actuality
without any regularity
whatever is a nullity. Chaos
is pure nothing.

- Charles Sanders Peirce
•

•

Hard to invest in this when funded
by HW enablement project:

AI is an end to end parallel compute problem,
not just an accelerated matmul problem

Hardware-first software drives AI fragmentation

Difficult to hire compiler engineers …

Community

•

Re-encoding all of computing into
"IR Builders" doesn't scale

We need to bring programmability back to AI!

•
•
•

… who have AI modeling experience, and

… who know exotic numerics, and

… who know specialized HW details ​

AI Research cannot rely on:
"compiler engineer in-the-loop"!

Language + Developer Fragmentation

 Model

CUDA (and others)Hardware

 System

How can you co-optimize host and accelerator code in different languages?

Mojo's Design Approach
Building a new language is a lot of work!

Can late bind to EDSL, language, etc.

Many options exist if the core tech
investment works out

For a de-risk, we don’t care
about syntax!

03

Metaprogramming, generalized
fusion, autotuning, integrated
caching, distributed compilation,
unconventional use of LLVM, etc

Prove integration of novel next-
generation compiler features

02

Demonstrate rapid architectural
generality without performance loss

Both µbenchmark and end-to-end

Prove we can beat SoTA kernels
on a wide range of hardware

01

Initial goal: De-risk our core hypothesis

"Compiler first" design approach

•
•

Build the compiler codegen strategy + unrelated parts of AI Engine
Validated by writing MLIR directly, allowing us to iterate rapidly
MLIR makes it very easy to prototype and build novel compilers

No Parser /

Frontend!

 Novel MLIR-based

compiler​

Hardware

Hardware

Hardware

 LLVM

•
•

We succeeded!
Beat SoTA kernel libraries / vendor compilers on key workloads
Re-learned how painful it is to write large amounts of MLIR by hand

Time for Syntax! What approach?

•
•
•

We need to evaluate tradeoffs between:
an existing language - e.g. C++ or Swift or Julia
an EDSL in Python or C++
a new, invented, language

•

•

Start from our goals:
Enable usability, for our fancy compiler technology
Meet AI devs where they are: in Python (doom voice)

Python drives the requirement: no C++/Swift/Julia/etc

Why not an Embedded DSL (EDSL) ?

☑

☑

☑

Many EDSLs in Python & C++ exist, because:
Much lower cost to produce than a full language
Don’t need to implement language tooling
Fast time to market

Our goals require full-stack innovation (including
the host) and aim for best usability!

☑

☑

Challenges with EDSLs:
Poor usability, poor tooling, poor debugging
Can't extend/fix the host language

•

•

Only way to deliver the best quality result
A native tools experience, debugger etc
Full generality for host CPUs: Python won't cut it

Build a new language?

Ridiculously expensive to do right!

•

•

•

•

•

However, this requires:
Consistent vision
Long term commitment
Funding for the development
Ability to attract specialized talent
Big target market of developers

Mojo🔥 provides full VSCode / LSP support,
REPL, Jupyter, and (shipping soon) LLDB Debugger

However, this requires:
 Consistent vision
 Long term commitment
 Funding for the development
 Ability to attract specialized talent
 Big target market of developers

Build a new language!

•

•

Only way to deliver the best quality result
AI developers are really important to the world
We’re tired of point solutions, research-quality
tools, flashy demos that don’t generalize

Clang

We have done this before:

Unlock the full power of MLIR​

Fancy compiler tech like autofusion

Support the needs of the AI engine​

Expose Modular’s next-
generation compiler technology

03

Work backward from unlocking HW -
not forward from legacy Python

Anything with a program counter (PC)

Focused on performance &
systems programming

02

Give superpowers to Python coders

Will grow into a “Python++” superset
over time (no “Python 4” fragmentation)

Member of the Python 🐍 family

01

Mojo design points

Mojo Internals 101
Core elements of the language + compiler

A programming
language for

MLIR?

Computers are complicated!

•

Are type systems solved? Look at floating point!
F16, BF16, F32, F64, and maybe F80 … right?

We need syntactic sugar for MLIR!

EVERYTHING THE

… MLIR CAN SOLVE

LIGHT TOUCHES…

•

•

•

•

•

What about:
Float8E5M2

Float8E4M3FN

Float8E5M2FNUZ

Float8E4M3FNUZ

Float8E4M3B11FNUZ!

What about tiled accelerators?

A library-first language 📚

•

•

•

•

•

C++ has an odd historical design
double is built-in to language
std::complex is a library

Goal: Push language design into libraries!
Extend without changing the compiler
Reduce engineering effort 👷🏽‍♀️
Talk to all the weird hardware 🔨

A enormous opportunity!

Python 🐍 to the rescue!

class Int:

 def __init__(self, value):

 self.value = value

 def __add__(self, rhs): ...

 def __lt__(self, rhs): ...

+

MLIR

struct Int:

 var value: __mlir_type.index

 fn __add__(self, rhs: Int) -> Int:

 return __mlir_op.`index.add`(self.value, rhs.value)

 fn __lt__(self, rhs: Int) -> Bool:

 return __mlir_op.`index.cmp`[

 pred = __mlir_attr.`#index<cmp_pred slt>`

](self.value, rhs.value)

Syntactic sugar for MLIR

Zero cost abstractions

•

•

•

•

Trivial
Bag of bits

@register_passable

Lives in SSA registers

@always_inline("nodebug")

No function call overhead
No generated debug info

@register_passable("trivial")

struct Bool:

 var value: __mlir_type.i1

 @always_inline("nodebug")

 fn __and__(self, rhs: Bool) -> Bool:

 return __mlir_op.`arith.andi`(

 self.value, rhs.value)

Putting it together

var i = 0

while i < 10:

 print(i)

 i += 1

%i = lit.varlet.decl "i" : !lit.ref<mut !Int, *"`i0">

%0 = kgen.param.constant: !Int = <{value = 0}>

lit.ref.store %0, %i : <mut !Int, *"`i0">

hlcf.loop {

 %1 = lit.ref.load %i : <mut !Int, *"`i0">

 %2 = kgen.param.constant: !Int = <{value = 10}>

 %3 = kgen.call @Int::@__lt__(%1, %2)

 %4 = kgen.call @Bool::@__mlir_i1__(%3)

 hlcf.if %4 {

 hlcf.yield

 } else {

 hlcf.break

 }

 %5 = lit.ref.load %i : <mut !Int, *"`i0">

 kgen.call @print(%5)

 %7 = kgen.param.constant: !Int = <{value = 1}>

 kgen.call @Int::@__iadd__(%i, %7)

 hlcf.continue

}

%idx0 = index.constant 0

%idx10 = index.constant 10

%idx1 = index.constant 1

hlcf.loop (%arg2 = %idx0 : index) {

 %0 = index.cmp slt(%arg2, %idx10)

 hlcf.if %0 {

 hlcf.yield

 } else {

 hlcf.break

 }

 %1 = kgen.call @print(%arg2)

 %2 = index.add %arg2, %idx1

 hlcf.continue %2 : index

}

M
L
I
R

anguage
ntermediate

epresentation

ojo

Bring your own Dialect struct Shape:

 var value: __mlir_type.`!mosh.ape`

 fn __add__(self, rhs: Self) -> Self:

 return __mlir_op.`mosh.concat`(

 self.value, rhs.value)

 fn __getitem__(self, n: Int) -> Int:

 return __mlir_op.`mosh.get_dim`(

 self.value, n.value)
•

Zero-cost MLIR wrappers form bottom
layer of Mojo

Syntactic sugar 🍭 for MLIR
Reusable MLIR front-end

EDSLs in Mojo for MLIR dialects!

kgen.generator @matmul_like_fw(

 %arg0: !mosh.ape, %arg1: !mosh.ape)

 -> !mosh.ape {

 %idx-1 = index.constant = -1

 %idx0 = index.constant = 0

 %idx-2 = index.constant = -2

 %0 = mosh.slice(%arg0)[%idx0, %idx-2]

 %1 = mosh.get_dim(%arg0)[%idx-2]

 %2 = mosh.get_dim(%arg1)[%idx-1]

 %3 = mosh.new(%1, %2)

 %4 = mosh.concat(%0, %3)

 kgen.return %4 : !mosh.ape

}

fn matmul_like_fw(sh_a: Shape, sh_b: Shape)

 -> Shape:

 return sh_a.slice(0, -2) +

 Shape(sh_a[-2], sh_b[-1])

EDSLs in Mojo for MLIR dialects!

kgen.generator @matmul_like_fw(

 %arg0: !mosh.ape, %arg1: !mosh.ape)

 -> !mosh.ape {

 %idx-1 = index.constant = -1

 %idx0 = index.constant = 0

 %idx-2 = index.constant = -2

 %0 = mosh.slice(%arg0)[%idx0, %idx-2]

 %1 = mosh.get_dim(%arg0)[%idx-2]

 %2 = mosh.get_dim(%arg1)[%idx-1]

 %3 = mosh.new(%1, %2)

 %4 = mosh.concat(%0, %3)

 kgen.return %4 : !mosh.ape

}

fn matmul_like_fw(sh_a: Shape, sh_b: Shape)

 -> Shape:

 return sh_a.slice(0, -2) +

 Shape(sh_a[-2], sh_b[-1])

Bonus: all the language tooling just works

Compile Time
Metaprogramming

Hardware generality / single-source-of-

truth

Kernel parameterization over vector

length, unroll factor, tile factor, …

C++ templates?
- Meta-lang != actual lang 😵‍💫
- Bad error messages 🤬
- Not powerful enough 😫

kgen.generator @microkernel<width>(

 %x: !pop.simd<f32, width>) -> !pop.simd<f32, width> {

 ...

}

kgen.generator @kernel(

 %in: !kgen.pointer, %out: !kgen.pointer,

 %size: index) {

 kgen.param.search width = <[2, 4, 8, 16, 32]>

 %step = kgen.param.constant = <width>

 scf.for %i = 0 to %size step %step {

 %x = pop.simd_load %in[%i] : <f32, width>

 %0 = kgen.call @microkernel<width>(%x)

 pop.simd_store %0 to %out[%i] : <f32, width>

 }

 kgen.return

} 🤔

Mojo needs …

•

•

•

Powerful metaprogramming:
Decorators
Metaclasses
Reflection

Mojo needs …

But … Runtime based is slow - it will never run on the
accelerator!

💡 Let's do it at compile time! 💡

… what Python 🐍 has

Mojo Parameter Syntax

"alias" declaration -> parameter

alias Float32 = SIMD[DType.f32, 1]

Struct with parameters

struct SIMD[dtype: DType, width: Int]:

 ...

Bind function parameters to type

fn first_class_simd[width: Int](

 x: SIMD[DType.float32, width]):

 pass

~= C++ templates

Meta-language = actual language

MLIR interpreter for a stack-based programming language
(Tuesday’s MLIR workshop)

MLIR interpreter with
memory model for
compile-time code
evaluation

03

Almost any user-defined
type can be used at
compile time

02

Mojo’s metaprogramming
language is just Mojo 🔥

01

39

http://tbh/

fn fill(lb: Int, ub: Int) -> Vector[Int]:

 var values = Vector[Int]()

 for i in range(lb, ub):

 values.append(i)

 return values

fn comptime_vector():

 alias vec = fill(15, 20)

 for e in vec: print(e)

Function can be called at either
compile or run time

Vector with heap
allocationVector computed at

compile-time…
used at runtime!

40

Mojo does not
"instantiate" in its parser!

fn print_int[value: Int]():

 print(value)

kgen.generator @print_int<value>() {

 %0 = kgen.param.constant = <value>

 kgen.call @print(%0)

 kgen.return

}

Source Code

Parametric,

Portable IR

Elaborator

Optimized

Target IR

LLVM IR

Target
Agnostic

Target
Specific

Elaboration Pass

kgen.generator @main() {

 kgen.call @print_int<42>()

 kgen.call @print_int<2023>()

}

kgen.func @"print_int,value=42"() {

 %0 = kgen.param.constant = <42>

 kgen.call @print(%0)

}

kgen.func @"print_int,value=2023"() {

 %0 = kgen.param.constant = <2023>

 kgen.call @print(%0)

}

kgen.func @main() {

 kgen.call @"print_int,value=42"()

 kgen.call @"print_int,value=2023"()

}

42

Autotuning!

Vector-length agnostic function...

fn microkernel[width: Int](x: SIMD[DType.f32, width])

 -> SIMD[DType.f32, width]): ...

fn kernel(in: ..., out: ..., size: Int):

 # Best vec length? Let Mojo decide!

 alias width = autotune(2, 4, 8, 16, 32)

 for i in range(0, size, width):

 microkernel(in.simd_load[width](i))

43

Performance problems with C++ templates

Passing by const& for generality

template<typename T>

T add(const T &lhs, const T &rhs) {

 return lhs + rhs;

}

Bad for performance for trivial types!
(When not inlined)

int x = ...

int y = ...

z = add(x, y);

Trivial arguments pinned to the stack

%1 = alloca i32

%2 = alloca i32

store i32 %x, i32* %1

store i32 %y, i32* %2

%z = call i32 @_Z3addRKiS0_(i32* %1, i32* %2)

int add(const int &lhs, const int &rhs) {

 return lhs + rhs;

}

HeavyString add(const HeavyString &lhs,

 const HeavyString &rhs) {

 return lhs + rhs;

}

44

kgen.func @"add,T=String"(

 %out: !kgen.pointer<!String>

 %lhs: !kgen.pointer<!String>,

 %rhs: !kgen.pointer<!String>) {

 kgen.call @String::@__add__(

 %out, %lhs, %rhs)

}

kgen.func @"add,T=Int"(

 %lhs: index, %rhs: index) -> index {

 %0 = index.add %lhs, %rhs

 kgen.return %0 : index

}

fn add[T: Addable](

 lhs: T, rhs: T) -> T:

return lhs + rhs

•

@register_passable types are promoted
during elaboration!

Dovetails with borrow conventions

Late ABI Lowering

45

Mojo
CodeGen

Architecture

46

Driven by OrcJIT
Lazy demand-driven compilation enables
responsive tooling

Each compilation phase is an OrcJIT
materialization layer with caching

Powers autotuning, REPL+ Jupyter, LLDB
exprs eval

E.g. mojo run my_file.🔥

lookup(“main“)

Source Level IR

Parametric,

Portable IR

Optimized IR

LLVM IR

Object Code

OrcJIT … as a static archive generator

.📦 .

.📦 .

.📦 .

.📦 .

.o

.o

.o

.o

ObjectLinkingLayer

.o.

.exe .a

48

Architecturally portable
code 📦

Source MLIR
Bytecode

Object Code Object Code Object Code

Optimized
Bytecode

Optimized
Bytecode

Optimized
Bytecode

Pre-elaboration portable
MLIR bytecode

•

Mojo can ship portable IR in packages
without source code!

Parametric bytecode is a much better

“precompiled header”

Packages may optionally contain target-
specific IR and “fat” object code for multiple
targets

Compilation with
Packages

Source MLIR
Bytecode

Object Code

Optimized Bytecode

Pre-elaboration portable
MLIR bytecode

foo.📦
main.

Source

Level IR

Parametric,

Portable IR

LLVM IR

Optimized IRAt each phase, pull in the pre-
processed IR instead of re-
running passes.

Optimized IR from package is
tossed before LLVM lowering

from foo import bar

fn main():

 bar()

LLVM IR, used
unconventionally 😏​

51

We love , but the LLVM
optimizer… has problems

•

•

•

Single-threaded LLVM IR optimizer
100x slowdown on emerging / modern machines

Weak and unpredictable loop optimizer

High performance relies on control and
predictability
Want to autotune loop optimization parameters

Some stuff built for Clang🔔 doesn’t apply to
Mojo

Good news! to the rescue!

fn kernel[vec_len: Int](

 in: ..., out: ..., size: Int):

 # Autotune the unroll factor!

 alias factor = autotune(1, 2, 4)

 @unroll(factor)

 for i in range(0, size, vec_len):

 ...

52

LLVM … the good parts

•
•
•

•
•

•
•

LLVM is good for:
GVN, Load/Store Optimization, LSR, etc
scalar optimization (e.g. instcombine)
target-specific code generation

We need to disable:

Vectorizer, loop unroller, etc
Inliner and other IPO passes

Solution: replace these!

Build new MLIR passes
Replace others with Mojo libraries

LLVM as a per-function
code generator!

•
•

•
•

New MLIR passes
Fast, parallel, controlled
Parameterized / elaboratable

One LLVMContext per-function

Parallelism!
Easy caching!

.📦

.📦

.o

.o

.o

.o

llvm-opt+llc

llvm-opt+llc

llvm-opt+llc

.o

.o

.o

.exe

Optimized IR

54

So much more …
•
•
•
•
•
•
•
•
•
•
•
•
•
•

CPython interoperability
Parameter design in MLIR
Lifetimes, ownership and early destruction
Keyword arguments and parameters
Function auto-parameterization
@value decorator and value semantics
Cross compilation, GPU programming
REPL and Jupyter notebook
LSP server, vscode plugin, code completion
First class LLDB integration
Compile time IR reflection
Mojo Concurrency model
Traits and static polymorphism
…

Mojo for High Performance
The need for speed

A look at existing
performance
libraries

57

Whatever it takes for performance
… at the cost of suffering for performance engineers

Write in
Assembly!
Please, no…

C++ Templates

Source: Composable Kernels

60

C++ DSL for ASM

Source: OneDNN

61

Python program to generate ASM

Source: Tensile

62

Python template to generate C++

Source: XNNPack

63

And these are just some of
the production libraries you
might have used today!

You lose on so much
Maintainability, debugging, tooling, …

Hackability has suffered with
binary library distributions

•

•

•

•

•

Libraries contain the program semantics and
hardware specifics

Higher level compilers (e.g. graph compilers)
cannot reason about them

Users cannot extend them and hardware
vendors cannot retarget them

You end up with point-solutions (Conv +
Activation+enum) of stamped popular
patterns

No consistent API, distribution story, …

This is why we built

Let's help the developer
•

•

•

•

•

•

Put optimizations into the library rather
than the compiler

Leverage humans for what they are good
at and computers where they are good at

Computers are great for searching - can be
brute force or intelligent
Search for right parameters or combination
of algorithms
Search can be distributed across N
machines

Give them the tools to be productive

•
•
•

Parametric on width and type
Scalars are SIMD type with a width of 1
All math functions work on SIMD elements

SIMD is a core type
• Built in from the beginning making it more usable

and natively accessible

Parallelism and asynchrony

Let's help the developer

Power to the developer

•

•
•

•

The full power of the silicon is available
in Mojo:

Access to all hardware intrinsics in
LLVM and MLIR
Ability to write inline assembly
Target any LLVM/MLIR backend

Mojo is a general purpose
programming language

Not limited in any way to “just AI”

Implementing compiler infrastructure
in Mojo as libraries

Mojo uses MLIR core,
but few standard dialects

•

•
•
•
•

We use LLVM and index dialect:
do not use arith, vector, affine, MemRef, Linalg, etc

Several reasons:

They are not always production quality
They do not always have full coverage
These often have complex interdependencies
Lowering is not always target hardware aware

Functionality is implemented in Mojo code as
libraries

Vector reduction in Mojo

struct SIMD[type: DType, width: Int]:

 ...

 fn reduce_max(self) -> SIMD[type, 1]:

 @parameter

 if size == 1:

 return self[0]

 elif is_x86():

 ...

73

Vector reduction in Mojo
 ...

 elif is_x86():

 fn reduce[type: DType, width: Int](val: SIMD[type, width]) -> SIMD[type, 1]:

 @parameter

 if size == 1:

 return val[0]

 elif size == 2:

 return max(val[0], val[1])

 alias half_width = width // 2

 let lhs = val.slice[half_width](0)

 let rhs = val.slicehalf_width

 return max(lhs.reduce_max(), rhs.reduce_max())

 return reduce(self)

 elif type.is_floating_point():

 ...

74

 ...

 elif is_x86():

 ...

 elif type.is_floating_point():

 return llvm_intrinsic["llvm.vector.reduce.fmax"](self)

 elif type.is_unsigned():

 return llvm_intrinsic["llvm.vector.reduce.umax"](self)

 else:

 return llvm_intrinsic["llvm.vector.reduce.smax"](self)

Vector reduction in Mojo

75

Compare that to …

76

Writing transforms as library functions

fn vectorize[simd_width: Int,

 func: fn[width: Int](Int) capturing -> None](size: Int):

 # Process a simd_width at a time.

 for i in range(0, size, simd_width):

 func[simd_width](i)

 # Handle left-over elements with scalars.

 for i in range(simd_width * (size // simd_width), size):

 func[1](i)

77

You can develop point-
solutions for important
specific problems.

03

You can invent new
optimizations that do not
exist in the compiler.

02

You do not have to know
what a dialect is or use
TableGen.

01

What does this mean to the developer?
Performance engineers don’t need to be compiler engineers

Mojo Performance Results

Mandlebrot
Mojo is 68,000x times
faster than Python 🐍

Read our blog on this now!

 var in_set_mask: SIMD[DType.bool, simd_width] = True

 for i in range(MAX_ITERS):

 if not in_set_mask.reduce_or():

 break

 in_set_mask = z.squared_norm() <= 4

 iters = in_set_mask.select(iters + 1, iters)

 z = z.squared_add(c)

 return iters

Mandelbrot performance

81

Matrix Multiplication

•

•
•
•

•

•

Studied extensively since the 60s
In 2023 there were 2k papers on GEMM

Optimal codegen is µarch dependent

Size of L$
Number of ports
Types of instructions available

Core part of LAPACK and ML workloads

Hardware companies are incentivized to optimize
performance for benchmarks
Part of core business for some companies

Libraries have been in development for decades

Goals for Matmul in Mojo
•
•
•
•
•

•

•

Single source of truth
Competes with SotA
No assembly/C++/…
Amenable to fusion
Works on dynamic shapes, can also be
specialized
Works across all CPU architectures
(VNNI, AVX512, NEON, AVX2, …)
Supports packing, different transpose
modes, ...

​

… our core hypothesis from the beginning!

Matmul performance

Fully dynamic, no pre-packing, and no inlined assembly!

1.46x faster than OneDNN on Intel

Read blog post here

84

Matmul performance
1.6x faster than SotA on AMD

Read blog post here

Read blog post here

85

Matmul performance
1.2x faster than RUY on ARM

Read blog post here

Read blog post here

Read blog post here

86

Toy tiled Matmul implementation
fn matmul(C: Matrix, A: Matrix, B: Matrix):

 fn calc_row(m: Int):

 fn calc_tile[tile_x: Int, tile_y: Int](x: Int, y: Int):

 for k in range(y, y + tile_y):

 fn dot[nelts: Int](n: Int):

 C.store[nelts](m,n+x,

 C.load[nelts](m,n+x) + A[m,k] * B.load[nelts](k,n+x))

 vectorize_unroll[nelts, tile_x // nelts, dot](tile_x)

 # Let Mojo pick the best tile size!

 alias tile_size = autotune(1, 2, 4, 8, 16, 32)

 tile[calc_tile, nelts * tile_size, tile_size](A.cols, C.cols)

 parallelize[calc_row](C.rows, C.rows)

87

Hypothesis validated
We can build high performance portable libraries

Less suffering
With Mojo you get performance and
generality in a production language

Mojo Roadmap

Mojo Development
Roadmap

•
•

Mojo is useful but still not done:
Many features in development

Prioritizing quality over time to market

New releases roll out every few weeks
Read our Public Roadmap!

https://docs.modular.com/mojo/roadmap.html

Open Source?

•
•
•
•
•

Many contributions to LLVM upstream:

MLIR Bytecode serialization
MLIR Resources
MLIR debug info support
MLIR index dialect
MLIR interpreter (soon?)

We will start opening Mojo itself
later this year!

Read more details here

https://docs.modular.com/mojo/faq.html#open-source

Mojo +
Modular AI Engine = ❤️‍🔥

•

•
•

Mojo unlocks programmability for any one
device:

… and communities of developers

AI Engine unlocks heterogeneous computers:

Distributed, asynchronous, accelerated
Rapidly evolving architectures

More technical details at:

Workshop on ML for Systems at NeurIPS

http://mlforsystems.org/

Download Now
https://www.modular.com/mojo

https://www.modular.com/mojo

