

A system programming language for heterogenous computing

Mojo 🕢 at a glance

Pythonic system programming language

- Driving SoTA in compiler and language design
- Forget everything you know about Python!:-)

One year old and still in development

- Freely available on Linux, Mac and Windows
- Full LLVM-based toolchain + VSCode LSP support
- Full emoji file extension support

Launched in May, already growing a

vibrant community:

• 150K users overall, 22K+ users on Discord

Well funded, long term commitment

fr	1	m	a	n
			S	i
](С	:		C
			S	II
			A	Ţ
			i	n
			1	e
			l	e
			V	a
			V	a
			V	a
			v	a
			v	a
			f	0

```
IV
  delbrot_kernel[
  md_width: Int
  omplexSIMD[float_type, simd_width]) ->
  MD[float_type, simd_width]:
  vectorized implementation of the
  ner mandelbrot computation.
   cx = c.re
   cy = c.im
   x = SIMD[float_type, simd_width](0)
   y = SIMD[float_type, simd_width](0)
    y2 = SIMD[float_type, simd_width](0)
    iters = SIMD[float_type, simd_width](0)
    t: SIMD[DType.bool, simd_width] = True
    i in range(MAX_ITERS):
    if not t.reduce_or():
        break
    y^{2} = y * y
   y = x.fma(y + y, cy)
   t = x.fma(x, y2) <= 4
   x = x.fma(x, cx - y2)
    iters = t.select(iters + 1, iters)
return iters
```

Agenda

01	Why Modular, Why Mojo?
02	Mojo Design Approach
03	Mojo Internals 101
04	Mojo + Accelerated Compute
05	Looking ahead

Modular

Why Modular, Why Mojo ()?

If AI is so important, why is all the software infrastructure so bad?

What's wrong with AI* Infrastructure?

Building and deploying models requires dozens of translators, deployment systems, quantization tools, vendor specific compilers and kernel libraries!

Why?

- No one has time to start from first principles
- Organizational politics / incentive structures
- Solving this is really hard!

We need fewer things, that work better!

*Note: We use "Al" as an abbreviation for "*distributed heterogeneous compute*" systems

Unify AI from the Bottom Up

A next generation "AI Engine" to unify the world

- Unify hardware, algorithms, and frameworks
- We've been on this quest for <u>many years</u>!

Meet AI developers where they are

- Drop in compatible with PyTorch, JAX, and TensorFlow
- Few AI devs want to rewrite their models

Not a research project

- Much has been learned over the last ~8 yrs of Al infra
- Bring best-in-class techniques into one system
- First principles design + aligned team of experts

What is an AI Engine?

A declarative "operator graph" - sometimes small subgraphs

enables transformation over the compute itself

Manages distributed heterogeneous compute:

This is more than just software for a single accelerator •

AI Engine Evolution

Hand Coded Kernel Libraries

Neither approach scales!

ML Compilers

Challenges with ML Compilers

Generality!

Many common limitations...

- Dynamic shapes
- Sparsity
- Quantization
- Custom ops
- Embedded support
- Model coverage

Hard to invest in this when funded by HW enablement project:

- Al is an end to end parallel compute problem, not just an accelerated matmul problem
- Hardware-first software drives AI fragmentation

"Generality is, indeed, an indispensable ingredient of reality; for mere individual existence or actuality without any regularity whatever is a nullity. Chaos is pure nothing.

- Charles Sanders Peirce

Community

Difficult to hire compiler engineers ...

- ... who have AI modeling experience, and
- ... who know exotic numerics, and
- ... who know specialized HW details

Al Research cannot rely on: "compiler engineer in-the-loop"!

Re-encoding all of computing into "IR Builders" doesn't scale

• We need to bring programmability back to Al!

Language + Developer Fragmentation

Model

Hardware

How can you co-optimize host and accelerator code in different languages?

Modular

classmethod def from_set settings. debug

Mojo's Design Approach

def

Building a new language is a lot of work!

def request fingerprint

Initial goal: De-risk our core hypothesis

01

Prove we can beat SoTA kernels on a wide range of hardware

Demonstrate rapid architectural generality without performance loss

Both µbenchmark and end-to-end

02

Prove integration of novel nextgeneration compiler features

Metaprogramming, generalized fusion, autotuning, integrated caching, distributed compilation, unconventional use of LLVM, etc.

03

For a de-risk, we don't care about syntax!

Can *late bind* to EDSL, language, etc.

Many options exist if the core tech investment works out

"Compiler first" design approach

Build the compiler codegen strategy + unrelated parts of AI Engine

- Validated by writing MLIR directly, allowing us to iterate rapidly
- MLIR makes it very easy to prototype and build novel compilers

We succeeded!

- Beat SoTA kernel libraries / vendor compilers on key workloads
- Re-learned how painful it is to write large amounts of MLIR by hand

Time for Syntax! What approach?

We need to evaluate tradeoffs between:

- an existing language e.g. C++ or Swift or Julia
- an **EDSL** in Python or C++
- a **new**, invented, language

Start from our goals:

- Enable usability, for our fancy compiler technology
- Meet AI devs where they are: in Python (doom voice)

Python drives the requirement: no C++/Swift/Julia/etc

Why not an Embedded DSL (EDSL)?

Many EDSLs in Python & C++ exist, because:

- Much lower cost to produce than a full language
- Don't need to implement language tooling
- Fast time to market

Challenges with EDSLs:

- Poor usability, poor tooling, poor debugging
- Can't extend/fix the host language

Our goals require full-stack innovation (including the host) and aim for best usability!

With Embedded Domain Specific Language

A DomainSpecificLanguage that is defined as a library for a generic "host" programming language. The embedded DSL inherits the generic language constructs of its host language - sequencing, conditionals, iteration, functions, etc. - and adds domain-specific primitives that allow programmers to work at a much higher level of abstraction. Multiple EDSLs can easily be combined into a single program and a programmer can use the facilities of the host language to extend the existing DSLs or use them to build an even higher level DSL.

Build a new language?

Only way to deliver the best quality result

- A native tools experience, debugger etc
- Full generality for host CPUs: Python won't cut it

However, this requires:

- Consistent vision
- Long term commitment
- Funding for the development
- Ability to attract specialized talent
- Big target market of developers

Ridiculously expensive to do right!

	🤚 main.mojo 1 💿			
	tmp > 🤚 main.mojo			
1	1 from algorithm.functional import			
funct	ion vectorize	 num_cores		
Maps simd_v	a function which is parametrized over a width over a range from 0 to size in simd fashion.	<pre> sync_parallelize tile tile_and_unswitch </pre>		
Parameters: simd_width: The SIMD vector width. func: The function for the loop body.		 ☆ triple_is_nvidia_cuda ☆ unroll ☆ unswitch 		
		<pre> vectorize vectorize_unroll </pre>		
Args:		format_float format_float		
size:	The total loop count.			

fn vectorize[simd_width: Int, func: fn[Int](

Mojo 🔥 provides full VSCode / LSP support, REPL, Jupyter, and (shipping soon) LLDB Debugger

Build a new language!

Only way to deliver the best quality result

- Al developers are really important to the world
- We're tired of point solutions, research-quality tools, flashy demos that don't generalize

However, this requires:

- Consistent vision
- Long term commitment
- Funding for the development
- Ability to attract specialized talent
- Big target market of developers

We have done this before:

Mojo design points

01

Member of the Python 🐍 family

Give superpowers to Python coders

Will grow into a "Python++" superset over time (no "Python 4" fragmentation) 02

Focused on performance & systems programming

Work backward from unlocking HW - not forward from legacy Python

Anything with a program counter (PC)

03

Expose Modular's nextgeneration compiler technology

- Unlock the full power of MLIR
 - Fancy compiler tech like autofusion
 - Support the needs of the AI engine

Modular

Mojo Unternals 101

William B. B.

Core elements of the language + compiler

A programming language **for** MLIR?

Computers are complicated!

Are type systems solved? Look at floating point!

• F16, BF16, F32, F64, and maybe F80 ... right?

What about:

- Float8E5M2
- Float8E4M3FN
- Float8E5M2FNUZ
- Float8E4M3FNUZ
- Float8E4M3B11FNUZ!

What about tiled accelerators?

We need syntactic sugar for MLIR!

EVERYTHING THE LIGHT TOUCHES...

... MLIR CAN SOLVE

C++ has an odd historical design

- double is built-in to language
- **std::complex** is a library

Goal: Push language design into libraries!

- Extend without changing the compiler
- Reduce engineering effort
- Talk to all the weird hardware

A enormous opportunity!

Python 7/2, to the rescue!

class Int:

- def __init__(self, value): self.value = value
- def __add__(self, rhs): ...
- def __lt__(self, rhs): ...

Syntactic sugar for MLIR

struct	Int:		
vai	value:	mlir_	_typ

fn __add__(self, rhs: Int) -> Int:

fn __lt__(self, rhs: Int) -> Bool: return __mlir_op.`index.cmp`[](self.value, rhs.value)

e.index

```
return __mlir_op.`index.add`(self.value, rhs.value)
     pred = __mlir_attr.`#index<cmp_pred slt>`
```

Zero cost abstractions

Trivial

Bag of bits \bullet

@register_passable

Lives in SSA registers ullet

@always_inline("nodebug")

- No function call overhead \bullet
- No generated debug info \bullet

@register_passable("trivial") struct Bool: var value: __mlir_type.i1

> return __mlir_op.`arith.andi`(self.value, rhs.value)

@always_inline("nodebug") fn ____and___(self, rhs: Bool) -> Bool:

Putting it together

```
%i = lit.varlet.decl "i" : !lit.ref<mut !Int, *"`i0">
%0 = kgen.param.constant: !Int = <{value = 0}>
lit.ref.store %0, %i : <mut !Int, *"`i0">
```

```
hlcf.loop {
  %1 = lit.ref.load %i : <mut !Int, *"`i0">
  %2 = kgen.param.constant: !Int = <{value = 10}>
  %3 = kgen.call @Int::@_lt_(%1, %2)
  %4 = kgen.call @Bool::@_mlir_i1_(%3)
  hlcf.if %4 {
    hlcf.yield
  } else {
    hlcf.break
  }
  %5 = lit.ref.load %i : <mut !Int, *"`i0">
```

%7 = kgen.param.constant: !Int = <{value = 1}>

kgen.call @Int::@__iadd__(%i, %7)

kgen.call @print(%5)

hlcf.continue

```
var i = 0
while i < 10:
  print(i)
  i += 1
```


ntermediate Representation

Bring your own Dialect

Zero-cost MLIR wrappers form bottom layer of Mojo

Syntactic sugar 🍭 for MLIR

• Reusable MLIR front-end

struct Shape: var value: __mlir_type.`!mosh.ape` fn __add__(self, rhs: Self) -> Self: return __mlir_op.`mosh.concat`(self.value, rhs.value) fn __getitem__(self, n: Int) -> Int: return __mlir_op.`mosh.get_dim`(self.value, n.value)

EDSLs in Mojo for MLIR dialects!

	kg	gen.gene
		%arg0
<pre>fn matmul_like_fw(sh_a: Shape, sh_b: Shape)</pre>		-> !n
-> Shape:		%idx-1
<pre>return sh_a.slice(0, -2) +</pre>		%idx0 =
<pre>Shape(sh_a[-2], sh_b[-1])</pre>		%idx-2
		%0 = mc
		%1 = mc
		%2 = mc
		%3 = mc
		%4 = mc
		kgen.re
	}	

lerator @matmul_like_fw(
0: !mosh.ape, %arg1: !mosh.ape)

mosh.ape {

= index.constant = -1

= index.constant = 0

= index.constant = -2

osh.slice(%arg0)[%idx0, %idx-2]

osh.get_dim(%arg0)[%idx-2]

osh.get_dim(%arg1)[%idx-1]

osh.new(%1, %2)

osh.concat(%0, %3)

eturn %4 : !mosh.ape

EDSLs in Mojo for MLIR dialects!

	kgen.gene
	%arg(
<pre>fn matmul_like_fw(sh_a: Shape, sh_b: Shape)</pre>	-> !r
-> Shape:	%idx-1
return sh a.slice(0, -2) +	%idx0 =

Bonus: all the language tooling just works

}

kgen.return %4 : !mosh.ape

Compile Time Metaprogramming

Mojo 🧄 needs ...

Hardware generality / single-source-oftruth

Kernel parameterization over vector length, unroll factor, tile factor, ...

C++ templates?

- Meta-lang != actual lang 🥯
- Bad error messages 🤬
- Not powerful enough 😫

. . . } kgen.generator @kernel(kgen.return }


```
kgen.generator @microkernel<width>(
    %x: !pop.simd<f32, width>) -> !pop.simd<f32, width> {
```

```
gen.generator @kernel(
   %in: !kgen.pointer, %out: !kgen.pointer,
   %size: index) {
   kgen.param.search width = <[2, 4, 8, 16, 32]>
   %step = kgen.param.constant = <width>
   scf.for %i = 0 to %size step %step {
    %x = pop.simd_load %in[%i] : <f32, width>
   %0 = kgen.call @microkernel<width>(%x)
   pop.simd_store %0 to %out[%i] : <f32, width>
```


Powerful metaprogramming:

- Decorators
- Metaclasses
- Reflection

But ... Runtime based is slow - it will never run on the accelerator!

Mojo Parameter Syntax

Struct with parameters
struct SIMD[dtype: DType, width: Int]:
...
Bind fun
fn first_c
x: SIN
"alias" declaration -> parameter
alias Float32 = SIMD[DType.f32, 1]

~= C++ templates

Bind function parameters to type fn first_class_simd[width: Int](x: SIMD[DType.float32, width]):

Meta-language = actual language

01

Mojo's metaprogramming language is just Mojo 🔥

02

Almost any user-defined type can be used at compile time

MLIR interpreter for a stack-based programming language

(Tuesday's MLIR workshop)

03

MLIR interpreter with memory model for compile-time code evaluation

Mojo 🧄 does not "instantiate" in its parser!

```
fn print_int[value: Int]():
    print(value)

kgen.generator @print_int<value>() {
```

```
kgen.generator @print_int<value>() {
  %0 = kgen.param.constant = <value>
  kgen.call @print(%0)
  kgen.return
}
```

Target Agnostic

et tic

Parametric, Portable IR

Elaborator

Optimized Target IR

LLVM IR

Target Specific

kgen.func @"print_int,value=42"() {
 %0 = kgen.param.constant = <42>
 kgen.call @print(%0)

kgen.func @"print_int, value=2023"() {
 %0 = kgen.param.constant = <2023>
 kgen.call @print(%0)

Autotuning!

Vector-length agnostic function... fn microkernel[width: Int](x: SIMD[DType.f32, width]) -> SIMD[DType.f32, width]): ...

fn kernel(in: ..., out: ..., size: Int): # Best vec length? Let Mojo decide! alias width = autotune(2, 4, 8, 16, 32)for i in range(0, size, width): microkernel(in.simd_load[width](i))

Performance problems with C++ templates

T add(const T &lhs, const T &rhs) { return lhs + rhs; }

- kgen.func @"add,T=String"(
 %out: !kgen.pointer<!String>
 %lhs: !kgen.pointer<!String>,
 %rhs: !kgen.pointer<!String>) {
 kgen.call @String::@__add__(
 - %out, %lhs, %rhs)

- kgen.func @"add,T=Int"(
 - %lhs: index, %rhs: index) -> index {
 - %0 = index.add %lhs, %rhs
 - kgen.return %0 : index

Mojo CodeGen Architecture

Driven by OrcJIT

Lazy demand-driven compilation enables responsive tooling

Each compilation phase is an OrcJIT materialization layer with caching

Powers autotuning, REPL+ Jupyter, LLDB exprs eval

E.g. mojo run my_file.

lookup("main")

OrcJIT ... as a static archive generator

Architecturally portable code

Mojo 🧄 can ship portable IR in packages without source code!

• Parametric bytecode is a much better "precompiled header"

Packages may optionally contain targetspecific IR and "fat" object code for multiple targets

Compilation with Packages

from foo import bar

fn main():
 bar()

At each phase, pull in the preprocessed IR instead of rerunning passes.

Optimized IR from package is tossed before LLVM lowering

LLVM IR, used unconventionally

We love , but the LLVM optimizer... has problems

Single-threaded LLVM IR optimizer

• 100x slowdown on emerging / modern machines

Weak and unpredictable loop optimizer

- High performance relies on control and predictability
- Want to autotune loop optimization parameters

Some stuff built for Clang (a) doesn't apply to Mojo (b)

fn kernel[vec_len: Int](
 in: ..., out: ..., size: Int):
 # Autotune the unroll factor!
 alias factor = autotune(1, 2, 4)
 @unroll(factor)
 for i in range(0, size, vec_len):
 ...

LLVM ... the good parts

LLVM is good for:

- GVN, Load/Store Optimization, LSR, etc
- scalar optimization (e.g. instcombine)
- target-specific code generation

We need to disable:

- Vectorizer, loop unroller, etc
- Inliner and other IPO passes

Solution: replace these!

- Build new MLIR passes
- Replace others with Mojo libraries

LLVM as a per-function code generator!

New MLIR passes

- Fast, parallel, controlled
- Parameterized / elaboratable
- One LLVMContext per-function
- Parallelism!
- Easy caching!

So much more ...

- CPython interoperability
- Parameter design in MLIR
- Lifetimes, ownership and early destruction
- Keyword arguments and parameters
- Function auto-parameterization
- @value decorator and value semantics
- Cross compilation, GPU programming
- REPL and Jupyter notebook
- LSP server, vscode plugin, code completion
- First class LLDB integration
- Compile time IR reflection
- Mojo Concurrency model
- Traits and static polymorphism

• ...

Modular

Mojo for High Performance

The need for speed

A look at existing performance libraries

Whatever it takes for performance

... at the cost of suffering for performance engineers

Writein Assembly!

Please, no...

lea

lea

add

add

sub


```
rax,[rdx+r8*2]
vpmovzxbw ymm4,XMMWORD PTR [rdx]
vpmovzxbw ymm5,XMMWORD PTR [rdx+r8]
vpmovzxbw ymm6,XMMWORD PTR [rax]
vpmovzxbw ymm7,XMMWORD PTR [rax+r8]
        rax,[rcx+r11*4]
vmovdqu YMMWORD PTR [rcx], ymm4
vmovdqu YMMWORD PTR [rcx+r11*2],ymm5
vmovdqu YMMWORD PTR [rax],ymm6
vmovdqu YMMWORD PTR [rax+r11*2],ymm7
vpaddw ymm0, ymm0, ymm4
        ymm1, ymm1, ymm5
vpaddw
       ymm2, ymm2, ymm6
vpaddw
vpaddw
        ymm3, ymm3, ymm7
        rdx,16
        rcx,16*2
        rbx,16
```

C++ Templates

static constexpr auto GemmDefault =

ck::tensor_operation::device::GemmSpecialization::Default;

using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl<
 ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout,
 AElementOp, BElementOp, CElementOp, GemmDefault, 256, 128, 128, 4, 2, 16,
 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 64, 1>,
 S<1, 0, 2>, S<1, 0, 2>, 2, 2, true, 7, 1>;

using ReferenceGemmInstance =

ck::tensor_operation::host::ReferenceGemm<ADataType, BDataType, CDataType,

<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;

#include "run_gemm_example.inc"

Source: Composable Kernels

C++ DSL for ASM

```
L(labels[4]);
test(K, 2);
jle(labels[5], T_NEAR);
innerkernel2(unroll_m, unroll_n, isLoad1Unmasked, isLoad2Unmasked, isDirect,
             isCopy, useFma, reg00, reg01, reg02, reg03, reg04, reg05,
             reg06, reg07, reg08, reg09, reg10, reg11, reg12, reg13, reg14,
             reg15, reg16, reg17, reg18, reg19, reg20, reg21, reg22, reg23);
align(16);
```

```
L(labels[5]);
```

```
if (unroll m == 16) {
   if (unroll n \le 3) {
        vaddps(reg00, reg00, reg12);
       vaddps(reg01, reg01, reg13);
        vaddps(reg02, reg02, reg14);
       vaddps(reg06, reg06, reg18);
       vaddps(reg07, reg07, reg19);
       vaddps(reg08, reg08, reg20);
```


Source: OneDNN

Python program to generate ASM

```
for iui in range(0, innerUnroll):
   for idx1 in range(0, kernel["ThreadTile1"]):
       for idx0 in range(0, kernel["ThreadTile0"]):
           vars["idx0"] = idx0
           vars["idx1"] = idx1
           vars["a"] = idx0 if writer.tPB["tile01Idx"] else idx1
           vars["b"] = idx1 if writer.tPB["tile01Idx"] else idx0
           vars["iui"] = iui
           vars["cStr"] = "v[vgprValuC + {idx0} + {idx1}*{ThreadTile0}]".format_map(vars)
           vars["aStr"] = "v[vgprValuA_X{m}_I{iui} + {a}]".format_map(vars)
           vars["bStr"] = "v[vgprValuB_X{m}_I{iui} + {b}]".format_map(vars)
           if instruction == "v_fma_f32":
               kStr += "v_fma_f32 {cStr}, {aStr}, {bStr}, {cStr}{endLine}".format_map(vars)
            else:
               kStr += "{instruction} {cStr}, {aStr}, {bStr}{endLine}".format_map(vars)
           kStr += priority(writer, 1, "Raise priority while processing macs")
```


Source: Tensile

Python template to generate C++

const __m128i vsign_mask = _mm_load_si128((const __m128i*)params->\${PARAMS_STRUCT}.sign_mask); const __m256 vsat_cutoff = _mm256_load_ps(params->\${PARAMS_STRUCT}.sat_cutoff); const __m256 vlog2e = _mm256_load_ps(params->\${PARAMS_STRUCT}.log2e); const __m256 vmagic_bias = _mm256_load_ps(params->\${PARAMS_STRUCT}.magic_bias); const __m256 vminus_ln2 = _mm256_load_ps(params->\${PARAMS_STRUCT}.minus_ln2); \$for i in reversed(range(2, P + 1)) : const __m256 vc\${i} = _mm256_load_ps(params->\${PARAMS_STRUCT}.c\${i}); \$if P != H + 1 : const __m256 vminus_one = _mm256_load_ps(params->\${PARAMS_STRUCT}.minus_one); const __m256 vtwo = _mm256_load_ps(params->\${PARAMS_STRUCT}.two); \$if P == H + 1 : const __m256 vminus_one = _mm256_load_ps(params->\${PARAMS_STRUCT}.minus_one);

Source: XNNPack

And these are just some of the **production libraries** you might have used today!

You lose on so much

Maintainability, debugging, tooling, ...

Hackability has suffered with binary library distributions

- Libraries contain the program semantics and hardware specifics
- Higher level compilers (e.g. graph compilers) cannot reason about them
- Users cannot extend them and hardware vendors cannot retarget them
- You end up with point-solutions (Conv + Activation+enum) of stamped popular patterns
- No consistent API, distribution story, ...

M /// Returns the `BlockArgument` corresponding to operand /// successor if 'operandIndex' is within the range of /// `operandIndex` isn't a successor operand index. moldlockArgument> all::getBranchSuccessorArgument(const SuccessorOpera unsigned operandInde eranditange forwardedOperands = operands.getForward // Check that the operands are valid. (forwardedOperands.empty()) return llvm::None; // Check to ensure that this operand is within the ran unsigned operandsStart = forwardedOperands.getBegin if (operandIndex < operandsStart ||</pre> operandIndex >= (operandsStart + forwardedOpera return llvn::lione; the successor. ProducedOperandCount() cressor->getArgument(argIndex

Interface

This is why we built

Let's help the developer

- Put optimizations into the library rather than the compiler
- Leverage humans for what they are good at and computers where they are good at
 - Computers are great for searching can be brute force or intelligent
 - Search for right parameters or combination of algorithms
 - Search can be distributed across N machines
- Give them the tools to be productive

Let's help the developer

SIMD is a core type

- Parametric on width and type
- Scalars are SIMD type with a width of 1
- All math functions work on SIMD elements

Parallelism and asynchrony

Built in from the beginning making it more usable and natively accessible

in Mojo:

- ●

Mojo is a general purpose programming language Not limited in any way to "just Al"

N۱

Power to the developer

The full power of the silicon is available

Access to all hardware intrinsics in LLVM and MLIR

Ability to write inline assembly

Target any LLVM/MLIR backend

Mojo uses MLIR core, but few standard dialects

We use LLVM and index dialect:

• do not use arith, vector, affine, MemRef, Linalg, etc

Several reasons:

- They are not always production quality
- They do not always have full coverage
- These often have complex interdependencies
- Lowering is not always target hardware aware

Functionality is implemented in Mojo code as libraries

Vector reduction in Mojo

struct SIMD[type: DType, width: Int]:

fn reduce_max(self) -> SIMD[type, 1]: @parameter if size == 1: return self[0]

elif is_x86():

. . .

. . .

Vector reduction in Mojo

```
. . .
elif is_x86():
    fn reduce[type: DType, width: Int](val: SIMD[type, width]) -> SIMD[type, 1]:
        @parameter
        if size == 1:
            return val[0]
        elif size == 2:
            return max(val[0], val[1])
        alias half_width = width // 2
        let lhs = val.slice[half_width](0)
```

```
let rhs = val.slice[half_width](half_width)
```

```
return max(lhs.reduce_max(), rhs.reduce_max())
```

```
return reduce(self)
elif type.is_floating_point():
```

. . .

Vector reduction in Mojo

elif is_x86():

. . .

. . . elif type.is_floating_point(): return llvm_intrinsic["llvm.vector.reduce.fmax"](self) elif type.is_unsigned(): return llvm_intrinsic["llvm.vector.reduce.umax"](self) else:

return llvm_intrinsic["llvm.vector.reduce.smax"](self)

Compare that to ...

/// Conversion pattern for all vector reductions. Nicolas Vasilache, 2 weeks ago | 5 authors (Siva Chandra Reddy and others) class VectorReductionOpConversion : public ConvertOpToLLVMPattern<vector::ReductionOp> { public: explicit VectorReductionOpConversion(const LLVMTypeConverter &typeConv, case vector::CombiningKind::MAXSI: bool reassociateFPRed) result = createIntegerReductionComparisonOpLowering< : ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv), LLVM::vector_reduce_smax>(rewriter, loc, llvmType, operand, acc, reassociateFPReductions(reassociateFPRed) {} LLVM::ICmpPredicate::sge); break; LogicalResult case vector::CombiningKind::AND: matchAndRewrite(vector::ReductionOp reductionOp, OpAdaptor adaptor, result = ConversionPatternRewriter &rewriter) const override { createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_and, auto kind = reductionOp.getKind(); LLVM:: AndOp>(rewriter, loc, llvmType, operand, acc); Type eltType = reductionOp.getDest().getType(); Type llvmType = typeConverter->convertType(eltType); break: case vector::CombiningKind::OR: Value operand = adaptor.getVector(); result = Value acc = adaptor.getAcc(); createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_or, Location loc = reductionOp.getLoc(); LLVM::0r0p>(rewriter, loc, llvmType, operand, acc); if (eltType.isIntOrIndex()) { break; // Integer reductions: add/mul/min/max/and/or/xor. case vector::CombiningKind::XOR: Value result; result = switch (kind) { createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_xor</pre> case vector::CombiningKind::ADD: LLVM::X0r0p>(result = rewriter, loc, llvmType, operand, acc); createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_add, break; LLVM:: AddOp>(default: rewriter, loc, llvmType, operand, acc); return failure(); break: case vector::CombiningKind::MUL: rewriter.replaceOp(reductionOp, result); result = createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_mul,</pre> return success(); LLVM::MulOp>(3 rewriter, loc, llvmType, operand, acc); break; if (!isa<FloatType>(eltType)) case vector::CombiningKind::MINUI: return failure(); result = createIntegerReductionComparisonOpLowering< LLVM::vector_reduce_umin>(rewriter, loc, llvmType, operand, acc, arith::FastMathFlagsAttr fMFAttr = reductionOp.getFastMathFlagsAttr(); LLVM::ICmpPredicate::ule); LLVM::FastmathFlagsAttr fmf = LLVM::FastmathFlagsAttr::get(break; reductionOp.getContext(), case vector::CombiningKind::MINSI: convertArithFastMathFlagsToLLVM(fMFAttr.getValue())); result = createIntegerReductionComparisonOpLowering< fmf = LLVM::FastmathFlagsAttr::get(LLVM::vector_reduce_smin>(rewriter, loc, llvmType, operand, acc, reductionOp.getContext(), LLVM::ICmpPredicate::sle); fmf.getValue() | (reassociateFPReductions ? LLVM::FastmathFlags::reasso : LLVM::FastmathFlags::none) break; case vector::CombiningKind::MAXUI: // Floating-point reductions: add/mul/min/max result = createIntegerReductionComparisonOpLowering< Value result: LLVM::vector_reduce_umax>(rewriter, loc, llvmType, operand, acc, LLVM:::ICmpPredicate::uge); if (kind == vector::CombiningKind::ADD) { repeated branch body in condit result = lowerReductionWithStartValue<LLVM::vector_reduce_fadd, break;


```
ReductionNeutralZero>(
         rewriter, loc, llvmType, operand, acc, fmf);
  } else if (kind == vector::CombiningKind::MUL) {
     result = lowerReductionWithStartValue<LLVM::vector_reduce_fmul,
                                          ReductionNeutralFPOne>(
         rewriter, loc, llvmType, operand, acc, fmf);
  } else if (kind == vector::CombiningKind::MINIMUMF) {
     result =
         createFPReductionComparisonOpLowering<LLVM::vector_reduce_fminimum>(
             rewriter, loc, llvmType, operand, acc, fmf);
  } else if (kind == vector::CombiningKind::MAXIMUMF) {
     result =
         createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmaximum>(
             rewriter, loc, llvmType, operand, acc, fmf);
  } else if (kind == vector::CombiningKind::MINF) {
     result = createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmin>(
         rewriter, loc, llvmType, operand, acc, fmf);
   } else if (kind == vector::CombiningKind::MAXF) {
     result = createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmax>(
         rewriter, loc, llvmType, operand, acc, fmf);
  } else
     return failure();
   rewriter.replaceOp(reductionOp, result);
   return success();
private:
const bool reassociateFPReductions;
```

Writing transforms as library functions

fn vectorize[simd_width: Int, func: fn[width: Int](Int) capturing -> None](size: Int): # Process a simd_width at a time. for i in range(0, size, simd_width): func[simd_width](i)

Handle left-over elements with scalars.
for i in range(simd_width * (size // simd_width), size):
 func[1](i)

What does this mean to the developer?

Performance engineers don't need to be compiler engineers

01

You do not have to know what a dialect is or use TableGen.

02

You can invent new optimizations that do not exist in the compiler.

03

You can develop pointsolutions for important specific problems.

Mandlebrot

Mojo 🤣 is 68,000x times faster than Python 🐍

<u>Read our blog on this now!</u>

return iters


```
var in_set_mask: SIMD[DType.bool, simd_width] = True
for i in range(MAX_ITERS):
    if not in_set_mask.reduce_or():
        break
    in_set_mask = z.squared_norm() <= 4</pre>
    iters = in_set_mask.select(iters + 1, iters)
    z = z.squared_add(c)
```

Mandelbrot performance

Matrix Multiplication

Studied extensively since the 60s

• In 2023 there were 2k papers on GEMM

Optimal codegen is µarch dependent

- Size of L\$
- Number of ports
- Types of instructions available

Core part of LAPACK and ML workloads

- Hardware companies are incentivized to optimize performance for benchmarks
- Part of core business for some companies

Libraries have been in development for decades

Goals for Matmul in Mojo

- Single source of truth
- Competes with SotA
- No assembly/C++/...
- Amenable to fusion
- Works on dynamic shapes, can also be specialized
- Works across all CPU architectures (VNNI, AVX512, NEON, AVX2, ...)
- Supports packing, different transpose modes, ...

... our core hypothesis from the beginning!

Matmul performance

1.46x faster than OneDNN on Intel

Shapes (MxNxK)

Fully dynamic, no pre-packing, and no inlined assembly!

Read blog post here

Matmul performance

1.6x faster than SotA on AMD

Shapes (MxNxK)

Read blog post here

Matmul performance

1.2x faster than RUY on ARM

Shapes (MxNxK)

Read blog post here

Toy tiled Matmul implementation

```
fn matmul(C: Matrix, A: Matrix, B: Matrix):
    fn calc_row(m: Int):
        fn calc_tile[tile_x: Int, tile_y: Int](x: Int, y: Int):
            for k in range(y, y + tile_y):
                fn dot[nelts: Int](n: Int):
                   C.store[nelts](m,n+x,
                         C.load[nelts](m,n+x) + A[m,k] * B.load[nelts](k,n+x))
```

```
vectorize_unroll[nelts, tile_x // nelts, dot](tile_x)
```

```
# Let Mojo pick the best tile size!
alias tile_size = autotune(1, 2, 4, 8, 16, 32)
tile[calc_tile, nelts * tile_size, tile_size](A.cols, C.cols)
```

parallelize[calc_row](C.rows, C.rows)

Hypothesis validated We can build high performance portable libraries

<u>Less suffering</u>

With Mojo you get performance and generality in a production language

M

Mojo 🧼 Roadmap

Mojo Oevelopment Roadmap

Mojo is *useful* but still not done:

- Many features in development
- Prioritizing quality over time to market

New releases roll out every few weeks Read our Public Roadmap!

Open Source?

Many contributions to LLVM upstream:

- MLIR Bytecode serialization
- MLIR Resources
- MLIR debug info support
- MLIR index dialect
- MLIR interpreter (soon?)

We will start opening Mojo 🔶 itself later this year!

Read more details here

open source initiative®

Mojo unlocks programmability for any one device:

• ... and communities of developers

Al Engine unlocks heterogeneous computers:

- Distributed, asynchronous, accelerated
- Rapidly evolving architectures

More technical details at: <u>Workshop on ML for Systems</u> at NeurIPS

Nodular

Download Now https://www.modular.com/mojo

