EmitC

Recent Improvements and
Future Developments

S

October 12, 2023

N

~ Fraunhofer

IML

Marius Brehler, Simon Camphausen

Outline

e The EmitC Dialect
e Users and Use-Cases
e Recent Improvements

e Future Developments

The EmitC Dialect

e EmitC is an MLIR dialect to emit C and C++ code.
e The dialect was initialy presented with https://reviews.llvm.org/D76571.

e Dialect was upstreamed on June 19, 2021.
e Emitter was upstreamed on September 2, 2021.

e The initially upstreamed dialect consisted of:

emitc.apply o #emitc.opaque
emitc.call o lemitc.opaque
emitc.constant

o O O O

emitc.include

https://reviews.llvm.org/D76571

EmitC - CallOp

operation ::=

“emitc.call” $callee *(* $operands *)" attr-dict *:* functional-type($operands, results)

e The call operation represents a C++ function call.

Example:

func.func @f (%argl0: i64, %argl: 1i64) -> 164 {

%0 = "emitc.call" (%arg0, %argl) {callee = "foo"} (104, 1i64) -> io64
return %0 : 164

}

func.func @f (%arg0: 164, %argl: 1i64) -> i64 {

%0 = emitc.call "foo" (%arg0,%argl) {} (i64, 1i64) -> 164

return %0 : io64

}

int64_t f(int64_t vl,
|:> int64 t v3 =

return v3;

}

int64 t v2)

foo(vl, v2);

{

Further Operations and Types
e Further operations and types were added:

o emitc.cast
o emitc.variable

o lemitc.ptr

Example:

// Cast from "int32 t° to "float"

%0 = emitc.cast %arg0: 132 to f32

// Cast from “void® to "int32 t' pointer

%1 = emitc.cast %argl : !emitc.ptr<!emitc.opaque<"void">> to !emitc.ptr<i32>

Users and Use-Cases

IREE and especially TinyIREE

(ETH Zurich’s) End-to-End Toolchain for Fully Homomorphic Encryption
CIRCT

Kokkos emitter

e TOSA/StableHLO to C++ (MLIR-EmitC)
o Google’s Machine Learning Guided Compiler Optimizations Framework (MLGO)

e MLIR/C Interfacing

IREE

e VM Bytecode is replaced
by generated C code

e Bytecode Interpreter is
no longer needed

e Results in smaller
executables

e Currently still requires
a custom emitter

=
IREE Compiler |

ML Model

\

K

Seﬁal—

ization

Host Code Generation T

VM Bytecode EmitC Dialect

\

VM Dialect Conversmm

Transla‘tnon j

\&

Generated

Device Code

(IREE Runtime

\

Bytecocde (Hardware
Interpreter Abstraction

Lat/er)

HAL

L m

CIRCT & Kokkos Emitter

Circuit IR Compilers and Tools

e Contains the SystemC dialect T
and an ExportSystemC emitter

e SystemC dialect imports types from EmitC
e The ExportSystemC emitter contains a
emitter for EmitC patterns

systemc.module @emitcEmission () {
systemc.ctor {
%0 = "emitc.constant"() {value = #emitc.opaque<"5">
: lemitc.opaque<"int">} : () ->
lemitc.opaque<"int">
$five = systemc.cpp.variable %0

: lemitc.opaque<"int">

CIRCT & Kokkos Emitter

Circuit IR Compilers and Tools I R Kokkos emitter
e Contains the SystemC dialect T e Allows to compile Python programs to
and an ExportSystemC emitter Kokkos C++ source code
e Used MLIR's existing C++ emitter as a
e SystemC dialect imports types from EmitC starting point
e The ExportSystemC emitter contains a e Ahigher-level set of dialects was chosen

emitter for EmitC patterns

systemc.module @emitcEmission () { MLIR Kokkos
systemc.ctor {
o .) memref.store %50 %A[%1] A(i) = 50;
%0 = "emitc.constant"() {value = f#emitc.opaque"5">
P g " " . —
: lemitc.opaquec™int">} : () e %0 = memref.alloc () : View<float[100]> v (“v”);
lemitc.opaque<"int"> memref<100x£32>
$five = systemc.cpp.variable %0
%a = math.sqrt S%b float a = Kokkos::sqgrt(b);

: lemitc.opaque<"int">

oe
V)
Il

arith.subf %b, %c float a = b - ¢c;

TOSA / StableHLO to C++

Conversions from TOSA / StableHLO to
Torch-MLIR 7 EmitC are available at
\ https://github.com/imlI130/mlir-emitc

'
[]

e Provides a header-only C++ reference

’ implementation
| TOSA StableHLo
e Allows to translate MobileNetV2 to a C++

N\

e Used by Google’s Machine Learning
EmitC Guided Compiler Optimizations
pa Framework (MLGO)

T (https://github.com/google/ml-compiler-opt) to
CepEmitter | - - ‘>® remove direct dependency to TensorFlow

X

\

MLIR / C Interfacing

4 ~

EREOSA \
e There are use-cases where code can or
should not be compiled with LLVM it
o Generate C or C++ instead \

\

e Can be realized via MLIR’s conversion MemreR / SCF /
framework Acth / ... e

e This requires further operations to
represent C / C++ constructs, currently not Ewite
supported by the upstream EmitC dialect —
h
. = ¢

\

Recent Improvements

e Arithmetic Operations

o

o O O O

emitc.add
emitc.div
emitc.mul
emitc.rem
emitc.sub

® emitc.cmp, supports

O O O O O O O

equal to

not equal to

less than

less than or equal
greater than

greater than or equal
three-way-comparison

emitc.

emitc.
emitc.
emitc.

emitc.

literal

assign
if
for

yield

Future Developments

e Further operations and types

(@)

(@)
(@)
(@)

emitc.
.struct (type / definition)

emitc.

emitc

emitc.

array

array

func

e Support for const type qualifiers
e Preprocessor directives
e Function declarations for mutually recursive functions

e \Verifiers (for C99, ...)

Conclusion

e The development is need-driven!
e If you have other use-cases and further requirements, let us know.

e Contributions are highly appreciated!

