
October 12, 2023

Marius Brehler, Simon Camphausen

EmitC
 Recent Improvements and

Future Developments

Outline

● The EmitC Dialect

● Users and Use-Cases

● Recent Improvements

● Future Developments

The EmitC Dialect

● EmitC is an MLIR dialect to emit C and C++ code.
● The dialect was initialy presented with https://reviews.llvm.org/D76571.

● Dialect was upstreamed on June 19, 2021.
● Emitter was upstreamed on September 2, 2021.

● The initially upstreamed dialect consisted of:

○ emitc.apply
○ emitc.call
○ emitc.constant
○ emitc.include

○ #emitc.opaque
○ !emitc.opaque

https://reviews.llvm.org/D76571

Example:

func.func @f(%arg0: i64, %arg1: i64) -> i64 {
 %0 = "emitc.call" (%arg0,%arg1) {callee = "foo"} : (i64, i64) -> i64
 return %0 : i64
}

func.func @f(%arg0: i64, %arg1: i64) -> i64 {
 %0 = emitc.call "foo" (%arg0,%arg1) {} : (i64, i64) -> i64
 return %0 : i64
}

EmitC - CallOp

operation ::=
 `emitc.call` $callee `(` $operands `)` attr-dict `:` functional-type($operands, results)

● The call operation represents a C++ function call.

int64_t f(int64_t v1, int64_t v2) {

 int64_t v3 = foo(v1, v2);

 return v3;

}

Further Operations and Types

● Further operations and types were added:

● emitc.cast

● emitc.variable

● !emitc.ptr

Example:

// Cast from `int32_t` to `float`

%0 = emitc.cast %arg0: i32 to f32

// Cast from `void` to `int32_t` pointer

%1 = emitc.cast %arg1 : !emitc.ptr<!emitc.opaque<"void">> to !emitc.ptr<i32>

Users and Use-Cases

● IREE and especially TinyIREE
● (ETH Zurich’s) End-to-End Toolchain for Fully Homomorphic Encryption
● CIRCT
● Kokkos emitter

● TOSA/StableHLO to C++ (MLIR-EmitC)
○ Google’s Machine Learning Guided Compiler Optimizations Framework (MLGO)

● MLIR/C Interfacing

IREE

● VM Bytecode is replaced
by generated C code

● Bytecode Interpreter is
no longer needed

● Results in smaller
executables

● Currently still requires
a custom emitter

CIRCT & Kokkos Emitter

Circuit IR Compilers and Tools

● Contains the SystemC dialect
and an ExportSystemC emitter

● SystemC dialect imports types from EmitC
● The ExportSystemC emitter contains a

emitter for EmitC patterns

systemc.module @emitcEmission () {

 systemc.ctor {

 %0 = "emitc.constant"() {value = #emitc.opaque<"5">

 : !emitc.opaque<"int">} : () ->

 !emitc.opaque<"int">

 %five = systemc.cpp.variable %0

 : !emitc.opaque<"int">

…

CIRCT & Kokkos Emitter

Circuit IR Compilers and Tools

● Contains the SystemC dialect
and an ExportSystemC emitter

● SystemC dialect imports types from EmitC
● The ExportSystemC emitter contains a

emitter for EmitC patterns

systemc.module @emitcEmission () {

 systemc.ctor {

 %0 = "emitc.constant"() {value = #emitc.opaque<"5">

 : !emitc.opaque<"int">} : () ->

 !emitc.opaque<"int">

 %five = systemc.cpp.variable %0

 : !emitc.opaque<"int">

…

Kokkos emitter

● Allows to compile Python programs to
Kokkos C++ source code

● Used MLIR's existing C++ emitter as a
starting point

● A higher-level set of dialects was chosen

MLIR Kokkos

memref.store %50 %A[%1] A(i) = 50;

%0 = memref.alloc() :
 memref<100xf32>

View<float[100]> v(“v”);

%a = math.sqrt %b float a = Kokkos::sqrt(b);

%a = arith.subf %b, %c float a = b – c;

TOSA / StableHLO to C++

● Conversions from TOSA / StableHLO to
EmitC are available at
https://github.com/iml130/mlir-emitc

● Provides a header-only C++ reference
implementation

● Allows to translate MobileNetV2 to a C++

● Used by Google’s Machine Learning
Guided Compiler Optimizations
Framework (MLGO)
(https://github.com/google/ml-compiler-opt) to
remove direct dependency to TensorFlow

MLIR / C Interfacing

● There are use-cases where code can or
should not be compiled with LLVM

○ Generate C or C++ instead

● Can be realized via MLIR’s conversion
framework

● This requires further operations to
represent C / C++ constructs, currently not
supported by the upstream EmitC dialect

Recent Improvements

● Arithmetic Operations
○ emitc.add
○ emitc.div
○ emitc.mul
○ emitc.rem
○ emitc.sub

● emitc.cmp , supports
○ equal to
○ not equal to
○ less than
○ less than or equal
○ greater than
○ greater than or equal
○ three-way-comparison

● emitc.literal

● emitc.assign

● emitc.if

● emitc.for

● emitc.yield

Future Developments

● Further operations and types
○ emitc.array

○ emitc.struct (type / definition)
○ emitc.array

○ emitc.func

● Support for const type qualifiers
● Preprocessor directives
● Function declarations for mutually recursive functions

● Verifiers (for C99, …)

Conclusion

● The development is need-driven!

● If you have other use-cases and further requirements, let us know.

● Contributions are highly appreciated!

