& Fuchsia

LLVM for Embedded

LLVM Dev Meeting 2023
Prabhu Karthikeyan Rajasekaran

Google LLC

Introduction

_02

Part of an LLVM toolchain team focused on low level operating systems.

We follow “upstream first” principle for LLVM development.

We build & ship our LLVM toolchains continuously from upstream.

Building an Operating System from Scratch with LLVM
[video][slides]
- Petr Hosek, Keynote LLVM Dev meeting 2021.

o Fuchsia

https://www.youtube.com/watch?v=DYaqzEbU0Vk&t=902s
https://llvm.org/devmtg/2021-11/slides/2021-BuildinganOperatingSystemfromScratchwithLLVM.pdf

Motivation

Motivation

e For embedded projects, =

Binary size

One-off toolchains are harder to improve

Take advantage of the rich tooling available

Unlock optimization opportunities (e.g. LTO, ML Inliner)

o O O O

e For the LLVM community,

o Number of projects in embedded domain is
continuing to grow

o Interesting challenges and problems to be worked on which
can have far reaching impact beyond the embedded context

_04

Pigweed (pigweed.dev)

_05

Open source collection of embedded-targeted libraries
One-stop-shop to get started on embedded projects
Pigweed ships our LLVM toolchain out of the box

Vibrant open source community
o Discord

Several projects across Google use Pigweed

http://pigweed.dev
https://discord.com/invite/M9NSeTA

Pixel Buds Pro

Complex Architecture

o Multiple cores - ARM Cortex MO, M4
m Charging Case, Bluetooth, Sensors and Bootloaders Applications

o Different RTOSes - FreeRTOS, EmbOS, ThreadX

Binary size constraints: Approximately 550 KiB

Hundreds of developers and millions of users

e Therecent feature drop for Pixel Buds Pro was built with our toolchain!

_06

Part 1 - Porting

Approach

° Incremental

o One target at a time
o One toolchain component at a time

e Maintain backward compatibility with the GNU toolchain.

Compiling Android userspace and Linux Kernel with LLVM
[video][slides]
- Nick Desaulniers, Greg Hackmann, and Stephen Hines, LLVM Dev meeting 2017.

Other past efforts: google3, Fuchsia

_08

https://www.youtube.com/watch?v=6l4DtR5exwo
https://llvm.org/devmtg/2017-10/slides/Hines-CompilingAndroidKeynote.pdf

Compiling and Linking

Compiler: GCC to Clang

e Better diagnostics

pw::sync: :Mutex& decoder_mutex_;
pw: :hdlc: :Decoder decoder_

PW_GUARDED_BY (¢ nutex_);
AN TYPO - missing ‘d’

e Clang warnings

o Unused variables/members, Constexpr violations, Integer type mismatches, Shadowing variables, Potential
unaligned access and more

o Addressing these warnings generally resulted in improved code quality

_010

Linker: BFD LD to LLD

_011

Linker scripts offer control over
memory layout

No automatic way to pack objects
across disjoint memory regions in LLD

Symbol resolution logic varies
between linkers

Linker script syntax accepted has
minor differences

Linkmap file formats differ

MEMORY {
REGION_1 (rx): ORIGIN = REGION 1_START,
(REGION_2_START - REGION_1_START)

REGION_2 (rx): ORIGIN = REGION_2_START,
(REGION_2_END - REGION_2_ START)

}

SECTIONS {

REGION_1_AREA : {
objl.0:* (.text*);
obj2.0:* (.text*);
obj3.0:* (.text*);

} > REGION_1

REGION_2_AREA : {
*(.text.BootEntry);
*(.text);
(.text.);

} > REGION_2

}

LENGTH

LENGTH

Runtime Crashes

Different defaults

e “-fshort-enum”
o ARM GCC sets “~fshort-enum” by default

o Layout mismatch between GCC and Clang built modules

_013

Latent bugs

e Underspecified Inline Assembly

int main(void) {

uintée4_t in =

uint64_t out;

__asm__ volatile (
"movs %[in], %[out]}
"adds %[out], %[out]," #ox1"
“movs %[in], %[a@c]"
"adds %[out ¥ Slout], #Ox1"
: [out] "=r" (out)
: [in] "r"™ (in)

);

assert(out == 2);

_014

Missing earlyclobber constraint “&”

: [out] "=&r" (out)

Latent bugs

° Race condition

o Application code was accessing a ring buffer data structure from
across threads without locking

_015

Differences in stack sizes

_016

No comprehensive stack usage analysis available for developers

Inlining decisions affect stack size

Debugging:
]
]

Clang/LLVM, however, has excellent support for understanding stack frame layouts
“-Rpass-analysis=stack-frame-layout”

remark:
Function: _ZNZax322SpatialAudioManagerllHandleEventEN2wl2event_router9ComponentEjPv
[SP-4], Type: Spill, Align: 4, Size:
SP-81. Type: Spill. Align: 4. Size:

Offset:
Offset:
Offset:
Offset:

Offset:

Offset:
Offset:

[SP-12], Type:
[SP-16], Type:
[SP-201, Type:
[SP-24], Type:
SP-552], Type:
large_inlined_:

Spill, Align: 4,
Spill, Align: 4,
Spill, Align: 4,
Spill, Align: 4,
Variable, Align:

Size:

Size-

Siz

Siz 4

8, . 1ze: 528

variablel @spatial_audio_manager.cc:21

Offset: [SP-1080], Type: Variable, Align: 8, Size: 528
large_inlined_variable2 @spatial_audio_manager.cc:22 [-Rpass-analysis=stack-frame-layout]
53 bool SpatialAudioManager::HandleEventcomponent component,

A

All Targets

Component Goal Status
Compiler GCC to Clang DONE G
Linker BFD to LLD DONE G
C library Newlib-nano to LLVM Libc Experimental
C++ library GNU stdlib to LLVM libc++ TBD

Runtimes GNU libgcc to compiler-rt builtins TBD

_017

Part 2 - Future Directions

Link Time Optimization

e Linker scripts have assumptions that doesn’'t account for LTO compilation

e Initial experiments suggest LTO can provide >10% size savings possible

_019

LLD - Wish list

e Missing features

o Automatic object packing support across disjoint memory regions
m “enable-non-contiguous-memory-regions”

o Overlays in LLD missing “NOCROSSREFS” support

e Improvements
o Support JSON format output for linkmaps
o “—print-gc-sections” - Print group signatures

e Wish list - https://bugs.fuchsia.dev/u/phosek@google.com/hotlists/LLVM-Embedded-Features

_020

https://bugs.fuchsia.dev/u/phosek@google.com/hotlists/LLVM-Embedded-Features
https://bugs.fuchsia.dev/u/phosek@google.com/hotlists/LLVM-Embedded-Features

More involved open-ended problems
e libc++ support for embedded
o ABI stability, bloat, configurability etc.
e Precise stack size analysis to identify how much stack to allocate
e Generic approaches to support runtimes in size constrained targets

o How can we achieve profiling on target devices?
o How can we adapt sanitizers to be employed on target devices?

_021

Summary

e We've shipped a real-world embedded project built with our Clang/LLVM toolchain
e L|LVM based toolchains have the potential to become the “de facto” toolchains for embedded projects
e Offering first class support to embedded scenarios can have far reaching positive impact across domains

e Community engagement
o LLVM Embedded Toolchains Working Group. Meets monthly

Q&A

_022

https://discourse.llvm.org/t/llvm-embedded-toolchains-working-group-sync-up/63270

Backup slides

Binary Size Optimizations

° Clang
o -fomit-frame-pointer
o -fshort-enums
o -0z
o GVN sink/hoist
"-mllvm’, "-enable-gvn-sink=1",
"-mllvm’, "-enable-gvn-hoist=1",
° LLD
o icf=all
o -02

° ML Inliner from the MLGO project

mon

“—mllvm”, "-enable-ml-inliner=release"

_024

