
_01

LLVM for Embedded
LLVM Dev Meeting 2023
Prabhu Karthikeyan Rajasekaran
Google LLC

_02

Introduction

● Part of an LLVM toolchain team focused on low level operating systems.

● We follow “upstream first” principle for LLVM development.

● We build & ship our LLVM toolchains continuously from upstream.

Building an Operating System from Scratch with LLVM
[video][slides]

- Petr Hosek, Keynote LLVM Dev meeting 2021.

https://www.youtube.com/watch?v=DYaqzEbU0Vk&t=902s
https://llvm.org/devmtg/2021-11/slides/2021-BuildinganOperatingSystemfromScratchwithLLVM.pdf

_03

Motivation

_04

Motivation

● For embedded projects,

○ Binary size
○ One-off toolchains are harder to improve
○ Take advantage of the rich tooling available
○ Unlock optimization opportunities (e.g. LTO, ML Inliner)

● For the LLVM community,

○ Number of projects in embedded domain is
continuing to grow

○ Interesting challenges and problems to be worked on which
can have far reaching impact beyond the embedded context

_05

Pigweed (pigweed.dev)

● Open source collection of embedded-targeted libraries

● One-stop-shop to get started on embedded projects

● Pigweed ships our LLVM toolchain out of the box

● Vibrant open source community
○ Discord

● Several projects across Google use Pigweed

http://pigweed.dev
https://discord.com/invite/M9NSeTA

_06

Pixel Buds Pro

● Complex Architecture

○ Multiple cores - ARM Cortex M0, M4
■ Charging Case, Bluetooth, Sensors and Bootloaders Applications

○ Different RTOSes - FreeRTOS, EmbOS, ThreadX

● Binary size constraints: Approximately 550 KiB

● Hundreds of developers and millions of users

● The recent feature drop for Pixel Buds Pro was built with our toolchain!

_07

Part 1 - Porting

_08

● Incremental

○ One target at a time
○ One toolchain component at a time

● Maintain backward compatibility with the GNU toolchain.

Approach

Compiling Android userspace and Linux Kernel with LLVM
[video][slides]

- Nick Desaulniers, Greg Hackmann, and Stephen Hines, LLVM Dev meeting 2017.

Other past efforts: google3, Fuchsia

https://www.youtube.com/watch?v=6l4DtR5exwo
https://llvm.org/devmtg/2017-10/slides/Hines-CompilingAndroidKeynote.pdf

_09

Compiling and Linking

_010

● Better diagnostics

● Clang warnings

○ Unused variables/members, Constexpr violations, Integer type mismatches, Shadowing variables, Potential
unaligned access and more

○ Addressing these warnings generally resulted in improved code quality

Compiler: GCC to Clang

_011

● Linker scripts offer control over
memory layout

● No automatic way to pack objects
across disjoint memory regions in LLD

● Symbol resolution logic varies
between linkers

● Linker script syntax accepted has
minor differences

● Linkmap file formats differ

Linker: BFD LD to LLD MEMORY {

 REGION_1 (rx): ORIGIN = REGION_1_START, LENGTH =

(REGION_2_START - REGION_1_START)

 REGION_2 (rx): ORIGIN = REGION_2_START, LENGTH =

(REGION_2_END - REGION_2_START)

}

SECTIONS {

 REGION_1_AREA : {

 obj1.o:* (.text*);

 obj2.o:* (.text*);

 obj3.o:* (.text*);

 } > REGION_1

 …
 REGION_2_AREA : {

 *(.text.BootEntry);

 *(.text);

 (.text.);

 } > REGION_2

}

_012

Runtime Crashes

_013

Different defaults

● “-fshort-enum”

○ ARM GCC sets “-fshort-enum” by default

○ Layout mismatch between GCC and Clang built modules

_014

Latent bugs

● Underspecified Inline Assembly

 Missing earlyclobber constraint “&”

_015

Latent bugs

● Race condition

○ Application code was accessing a ring buffer data structure from
across threads without locking

_016

Differences in stack sizes

● No comprehensive stack usage analysis available for developers

● Inlining decisions affect stack size

● Debugging:
■ Clang/LLVM, however, has excellent support for understanding stack frame layouts
■ “-Rpass-analysis=stack-frame-layout”

_017

All Targets

Component Goal Status

Compiler GCC to Clang DONE

Linker BFD to LLD DONE

C library Newlib-nano to LLVM Libc Experimental

C++ library GNU stdlib to LLVM libc++ TBD

Runtimes GNU libgcc to compiler-rt builtins TBD

_018

Part 2 - Future Directions

_019

Link Time Optimization

● Linker scripts have assumptions that doesn’t account for LTO compilation

● Initial experiments suggest LTO can provide >10% size savings possible

_020

LLD - Wish list

● Missing features

○ Automatic object packing support across disjoint memory regions
■ “enable-non-contiguous-memory-regions”

○ Overlays in LLD missing “NOCROSSREFS” support

● Improvements

○ Support JSON format output for linkmaps

○ “–print-gc-sections” - Print group signatures

● Wish list - https://bugs.fuchsia.dev/u/phosek@google.com/hotlists/LLVM-Embedded-Features

https://bugs.fuchsia.dev/u/phosek@google.com/hotlists/LLVM-Embedded-Features
https://bugs.fuchsia.dev/u/phosek@google.com/hotlists/LLVM-Embedded-Features

_021

More involved open-ended problems

● libc++ support for embedded
○ ABI stability, bloat, configurability etc.

● Precise stack size analysis to identify how much stack to allocate

● Generic approaches to support runtimes in size constrained targets
○ How can we achieve profiling on target devices?
○ How can we adapt sanitizers to be employed on target devices?

_022

Summary

● We’ve shipped a real-world embedded project built with our Clang/LLVM toolchain

● LLVM based toolchains have the potential to become the “de facto” toolchains for embedded projects

● Offering first class support to embedded scenarios can have far reaching positive impact across domains

● Community engagement
○ LLVM Embedded Toolchains Working Group. Meets monthly

Q&A

https://discourse.llvm.org/t/llvm-embedded-toolchains-working-group-sync-up/63270

_023

Backup slides

_024

Binary Size Optimizations

● Clang
○ -fomit-frame-pointer
○ -fshort-enums
○ -Oz
○ GVN sink/hoist

 "-mllvm", "-enable-gvn-sink=1",
 "-mllvm", "-enable-gvn-hoist=1",

● LLD
○ icf=all
○ -O2

● ML Inliner from the MLGO project
 “-mllvm”, "-enable-ml-inliner=release"

