
_01

Using Clang’s source-based
code coverage at scale

2023 LLVM Developers' Meeting October 12, 2023

Gülfem Savrun Yeniçeri, Petr Hosek gulfem@google.com phosek@google.com

_02

Code coverage
in Fuchsia

We collect incremental
coverage at pre-submit
testing and surface it in
the code review tool.

_03

Code coverage
in Fuchsia

We collect absolute
coverage in continuous
integration and surface it
in the code search tool.

_04

Clang source-based code
coverage

Combines profiling (PGO) instrumentation with mapping
derived from AST and preprocessor information.

The instrumentation is applied early, before optimizations
to avoid negative impact on coverage report quality.

This generates precise coverage data, but with significant
performance overhead.

Source-based Code Coverage

https://clang.llvm.org/docs/SourceBasedCodeCoverage.html

_05

c.c
b.c

b.profraw
b.profraw

b.out
b.out

a.profraw

merged.profdata

coverage.json

llvm-cov export -instr-profile merged.profdata a.out

llvm-profdata merge a.profraw -o merged.profdata

LLVM_PROFILE_FILE="a.profraw" a.out

a.c

a.out

clang a.c -o a.out -fprofile-instr-generate -fcoverage-mapping

In Fuchsia
14,000 sources
4,500 tests
5,000 binaries
7,000 raw profiles
1GB indexed profile

_06

Emitting profiles with
abnormal termination

The profile runtime uses an atexit() hook to write out
the raw profile to disk.

If the process terminates abnormally, atexit() hooks
may not be executed resulting in missing coverage.

This is a problem for tests that spawn subprocesses such
as "death tests".

_07

During abnormal
termination, an

empty profile is
generated.

0 int main(int argc, char** argv) {
0 if (argc != 1) {
0 abort();
0 }
0 return 0;
0 }

Emitting profiles during abnormal termination

$ clang a.c -o a.out \
 -fprofile-instr-generate -fcoverage-mapping
$ LLVM_PROFILE_FILE="a.profraw" ./a.out LLVM DevMtg
Aborted
$ llvm-profdata merge -sparse a.profraw -o a.profdata
$ llvm-cov show ./a.out -instr-profile=a.profdata

a.c

_08

Binary

.text __llvm_prf_cnts __llvm_prf_data __llvm_prf_names

Profile

cnts data names

Memory

Disk

counter update:
c = __profc[idx];
c++;
__profc[idx] = c

_09

Binary

.text __llvm_prf_cnts __llvm_prf_data __llvm_prf_names

Profile

cnts data names

Profile

cnts data names

Memory

Disk

bias update:
__llvm_profile_counter_bias = &cnts - &__llvm_prf_cnts

__llvm_prf_cnts

counter update:
c = *(&__profc[idx] + __llvm_profile_counter_bias)
c++
*(&__profc[idx] + __llvm_profile_counter_bias) = c

_010

During abnormal
termination, profile

is written out as
expected.

1 int main(int argc, char** argv) {
1 if (argc != 1) {
1 abort();
0 }
0 return 0;
1 }

Using runtime counter relocation

$ clang a.c -o a.out \
 -fprofile-instr-generate -fcoverage-mapping \
 -mllvm -runtime-counter-relocation
$ LLVM_PROFILE_FILE="a%c.profraw" ./a.out LLVM DevMtg
Aborted
$ llvm-profdata merge -sparse a.profraw -o a.profdata
$ llvm-cov show ./a.out -instr-profile=a.profdata

Runtime counter
relocation can be

enabled by a
backend option and

requires %c flag.

a.c

_011

In Fuchsia, we use runtime counter relocation by default.
Since the profile is emitted at the start of the program,
and the counters are updated on-the-fly, abnormal
termination is no longer an issue.

Runtime counter relocation introduces a level of
indirection which results in runtime overhead and
increased binary size.

Note that macOS uses a different approach called
"continuous mode" which relies on overmapping.

Writing counters on-the-fly

_012

Reducing the size of
instrumented binaries

In a typical C/C++ and Rust binary, there is large number
of unused functions.

In an uninstrumented build, these would be stripped by
the linker --gc-sections feature (in ELF).

That was not possible for instrumented binaries as the
metadata sections had references to the .text section
which prevented the linker from discarding these.

_013

b

a

c

Binary

.text.a __llvm_prf_cnts __llvm_prf_data

.text.b __llvm_prf_cnts __llvm_prf_data

.text.b __llvm_prf_cnts __llvm_prf_data

.text __llvm_prf_cnts __llvm_prf_data __llvm_prf_names

_014

We explored several potential solutions, we ended up
introducing a new Comdat selection kind in LLVM IR:
nodeduplicate

This is lowered to ELF zero-flag section group which is
now supported by LLVM and LLD.

Addressing this issue reduced the size of instrumented
binaries and generated profiles by 50% in Fuchsia.

This approach could be used for other kinds of
instrumentation that generates metadata sections.

Support for ELF zero-flag section groups

_015

Selective instrumentation

A patch typically only modifies a small subset of files.

We can significantly reduce the coverage overhead by
only instrumenting the modified files.

We reuse the sanitizer special case list format to specify
files/functions to allow/skip/forbid instrumentation for.

At the LLVM IR level, this translates to noprofile and
skipprofile function attributes.

_016

Specify which
functions and

sources to
allow/skip/forbid

instrumentation for
using the sanitizer

special case list
format.

Only apply to frontend instrumentation.
[clang]

Instrument function named foo.
function:foo=allow

Instrument all source files in lib/foo.
source:lib/foo/*.c=allow

Otherwise skip instrumentation.
default:skip

Using selective instrumentation

$ clang a.c -o a.out -fprofile-list=cov.list \
 -fprofile-instr-generate -fcoverage-mapping

-fprofile-list
flag is used to pass
the list to compiler.

cov.list

_017

We use different machines for building, running tests and
coverage post-processing.

We always strip binaries to reduce their size, and upload
the unstripped binaries to symbol server.

We need to use unstripped binaries for coverage
post-processing.

We need a way to associate the collected profiles with
unstripped binaries during post-processing.

Fuchsia coverage pipeline

Building an Operating System
from Scratch with LLVM

https://www.youtube.com/watch?v=DYaqzEbU0Vk
https://www.youtube.com/watch?v=DYaqzEbU0Vk

_018

c.c

a.out
a.out

c.out
b.out

b.c

b.out
b.out

merged.profdata

b.profraw
b.profraw

a.profraw

a.c

a.stripped.out

a.out

Symbol server

a.out

Upload unstripped binaries
to the symbol server

coverage.json

llvm-cov export -instr-profile merged.profdata a.out

llvm-strip -o a.stripped.out a.out

_019

Embedding binary ID in
profiles

Binary ID refers to the unique identifiers for binaries in
different file formats.

● Build ID as a unique identifier in ELF
● LC_UUID as an identifier in Mach-O
● GUID used in COFF

Binary ID embedded inside the profile can be used to
map the profile back to the binary that produced it.

Note that GCC generates Build ID by default, Clang can
be opted in by the ENABLE_LINKER_BUILD_ID CMake
flag, you can also use the --build-id linker flag.

Build ID

https://fedoraproject.org/wiki/RolandMcGrath/BuildID

_020

The profile runtime
writes binary ID into

the profile as an
optional field.

llvm-profdata
can be used to

display it.

$ clang a.c -o a.out -Wl,--build-id \
 -fprofile-instr-generate -fcoverage-mapping
$ LLVM_PROFILE_FILE="a.profraw" ./a.out
$ llvm-profdata show -–binary-ids a.profraw
Binary IDs:
02274a7974e4593e65b37d81ce602dba1b54edee

Support for binary ID in coverage

_021

a.out
a.out

c.out
b.out

c.c
b.c

b.profraw
b.profraw

b.out
b.out

a.profraw

merged.profdata

coverage.json

llvm-cov export -instr-profile merged.profdata a.out

a.c

a.stripped.out

a.out

Symbol server

a.out

llvm-profdata show –binary-ids a.profraw

fec93fc96af1fa84

Fetch unstripped binary
from the symbol server

_022

In Fuchsia, using binary ID simplified the pipeline,
increased the reliability and reduced coverage
post-processing time by 25%.

Using binary ID in profiles

_023

Debuginfod support in LLVM

debuginfod is a simple HTTP API that can be used to
fetch unstripped binaries by build ID.

LLVM libDebuginfod is a client/server implementation
which can be easily integrated into LLVM tools.

debuginfod is already supported by llvm-symbolize
and llvm-objdump.

Introducing debuginfod, the
elfutils debuginfo server

https://developers.redhat.com/blog/2019/10/14/introducing-debuginfod-the-elfutils-debuginfo-server
https://developers.redhat.com/blog/2019/10/14/introducing-debuginfod-the-elfutils-debuginfo-server

_024

a.out
a.out

c.out
b.out

c.c
b.c

b.profraw
b.profraw

b.out
b.out

a.profraw

merged.profdata

coverage.json

llvm-cov export -instr-profile merged.profdata a.out

a.c

a.stripped.out

a.out

Symbol server

a.out

llvm-profdata show –binary-ids a.profraw

fec93fc96af1fa84

Fetch unstripped binary
from the symbol server

_025

We added debuginfod support to llvm-cov to fetch
binaries using the binary IDs embedded in the indexed
profile.

This further simplified our infrastructure which already
uses debuginfod for symbolization.

Using debuginfod for coverage

_026

Per-directory index in
coverage reports

Co-mentored Yuhao Gu who participated in the Google
Summer of Code Program (GSoC) with LLVM organization
this summer.

Improved the readability of textual and HTML coverage
reports by enhancing llvm-cov.

Enhancing llvm-cov to Generate
Hierarchical Coverage Reports

https://summerofcode.withgoogle.com/
https://summerofcode.withgoogle.com/
https://discourse.llvm.org/t/coverage-support-a-hierarchical-directory-structure-in-generated-coverage-html-reports/68239
https://discourse.llvm.org/t/coverage-support-a-hierarchical-directory-structure-in-generated-coverage-html-reports/68239

_027

Per-directory index in
coverage reports

llvm-cov generates a
single top-level HTML
index for the entire
project.

For Fuchsia, this HTML
has 14,000 rows and is
14MB becoming unusable
in most browsers.

_028

Per-directory index in
coverage reports

llvm-cov can generate
per-directory index with
-show-directory-cove
rage

Support directory layout in
coverage reports

https://reviews.llvm.org/D151283
https://reviews.llvm.org/D151283

_029

Per-directory index in
coverage reports

This feature is also
enabled for LLVM
coverage reports.

LLVM Coverage bot

_030

Q&A

There are of opportunities for further improvements
that we would like to explore in the future.

If you're interested in collaborating on the ideas listed
on this slide, please reach out.

Support for boolean counters to reduce runtime overhead
For coverage, we only need to know if region was executed

Omit the unnecessary sections from binaries and profiles
Sections other than counters can be stripped for coverage

Support string merging for __llvm_prf_names
This would enable deduplication resulting in 10x reduction

Make __llvm_prf_data position independent
Avoid per-function dynamic relocation and allow sharing

Avoid the use of indirection for runtime counter relocation
This requires assistance from linker and dynamic linker

