
1

Building a Fast Back-End for LLVM

Tobias Schwarz Alexis Engelke
{tobias.schwarz,engelke}@tum.de

Chair of Data Science and Engineering
Technical University of Munich

Eighth LLVM Performance Workshop at CGO
02.03.2024

2

Motivation

▶ For non-optimized codegen, compilation latency usually important
(e.g. JIT, developer productivity)

▶ LLVM is widely used in compilers and can easily produce optimized code

▶ O0 back-end relatively slow

Can we do better?

3

Transforming LLVM-IR to Machine Code
General Strategy

▶ Build symbol table

▶ Generate data and relocations for globals and resolve aliases

▶ Per Function:
▶ Instruction selection
▶ Register/Stack allocation and PHI elimination
▶ Unwind/Exception information
▶ Relocations

▶ Either lay out in memory directly or
generate object file with appropriate sections

4

Transforming LLVM-IR to Machine Code – Example
Globals

▶ Can be simple:

@.str.6 = private unnamed_addr

constant [23 x i8] c"old␣output␣scalar␣file\00", align 1

▶ Or more difficult:

@_ZTI20cOutputScalarManager = linkonce_odr dso_local

constant { ptr, ptr, ptr } {

ptr getelementptr inbounds (

ptr,

ptr @_ZTVN10__cxxabiv120__si_class_type_infoE,

i64 2),

ptr @_ZTS20cOutputScalarManager,

ptr @_ZTI7cObject

}, comdat, align 8

▶ Need to generate appropriate section contents and relocations

5

Transforming LLVM-IR to Machine Code – Example
Function

int foo(int n) {

int res = 1;

while (n) {

res *= n * n;

n -= 1;

}

return res;

}

define i32 @foo(int)(i32 noundef %n) {

entry:

%tobool.not6 = icmp eq i32 %n, 0

br i1 %tobool.not6, label %while.end, label %while.body

while.body:

%res.08 = phi i32 [%mul1, %while.body], [1, %entry]

%n.addr.07 = phi i32 [%sub, %while.body], [%n, %entry]

%mul = mul nsw i32 %n.addr.07, %n.addr.07

%mul1 = mul nsw i32 %mul, %res.08

%sub = add nsw i32 %n.addr.07, -1

%tobool.not = icmp eq i32 %sub, 0

br i1 %tobool.not, label %while.end, label %while.body

while.end:

%res.0.lcssa = phi i32 [1, %entry], [%mul1, %while.body]

ret i32 %res.0.lcssa

}

6

Transforming LLVM-IR to Machine Code – Example
Function

entry:

%0:gr32 = COPY $edi
%1:gr32 = MOV32ri 1

TEST32rr %0:gr32, %5:gr32

JE %while.end

JMP %while.body

while.body:

%2:gr32 = PHI %1:gr32, %entry, %5:gr32, %while.body

%3:gr32 = PHI %0:gr32, %entry, %6:gr32, %while.body

%4:gr32 = IMUL32rr %3:gr32, %3:gr32

%5:gr32 = IMUL32rr %4:gr32, %2:gr32

%6:gr32 = DEC32r %3:gr32

JNE %while.body

JMP %while.end

while.end:

%7:gr32 = PHI %1:gr32, %entry, %2:gr32, %while.body

$eax = COPY %7:gr32

RET

7

Transforming LLVM-IR to Machine Code – Example
Function

entry:

liveins: $edi
$eax = MOV32ri 1

TEST32rr $edi, $edi
JE %while.end

while.body:

liveins: $eax, $edi
$ecx = COPY $edi
$ecx = IMUL32rr $ecx, $edi
$eax = IMUL32rr $eax, $ecx
$edi = DEC32r $edi
JNE %while.body

while.end:

liveins: $eax
RET

8

Transforming LLVM-IR to Machine Code – Example
Function

0:

PUSHr $rbp
$rbp = COPY $rsp

entry:

liveins: $edi
$eax = MOV32ri 1

TEST32rr $edi, $edi
JE %while.end

while.body:

liveins: $eax, $edi
$ecx = COPY $edi
$ecx = IMUL32rr $ecx, $edi
$eax = IMUL32rr $eax, $ecx
$edi = DEC32r $edi
JNE %while.body

while.end:

liveins: $eax
$rsp = COPY $rbp
POPr $rbp
RET

9

How to Compile Faster

▶ IR gets rewritten several times ⇝ performance cost

▶ Reduce number of passes over IR from > 60

▶ LLVM-IR is not very cache-friendly
⇒ use optimized data structures

▶ Make strong assumptions about input IR

▶ For now, focus on x86 64

10

Assumptions About Input IR

▶ Roughly what clang produces at O0
▶ Regular Data Types

▶ i1-i64, i128
▶ float, double, no x86 long double
▶ Currently, no vector types

▶ Aggregate types must fit in two registers, max two members

▶ No inline assembly

▶ No special/custom sections

▶ No thread-local storage

▶ No garbage collection support

▶ . . .

11

Compiling Globals

▶ Create symbols for globals, aliases and functions
▶ Globals with initializer are layed out sequentially depending on their attributes

▶ Distinction between data, rodata, relro
▶ special handling for llvm.global ctors/llvm.global dtors
▶ Use of constant expressions currently very limited
▶ No deduplication of equivalent globals

▶ Global aliases are resolved after all functions have been compiled

Generate
Globals

12

Preprocessing of LLVM-IR

▶ Assign consecutive ids to values and blocks for faster iteration
▶ Build lookup arrays to store auxiliary information during compilation

▶ Instruction fused? Is value an argument?
▶ Precompute storage size + register bank for type
▶ Alloca frame offsets
▶ Liveness information
▶ Stack/Register Assignments

▶ Remove IR constructs which make compilation more difficult
▶ Constant expressions/aggregates
▶ Non-constant indices for GEPs, except the first

Generate
Globals

LLVM IR
Pass

13

Analyzer

▶ Identify loops and place
blocks accordingly

▶ Loops are basis for live
intervals of values

▶ Additional refcounting for
better liveness information
inside of loops

a = ARGUMENT(0)

b = ϕ(1, e)

c = ϕ(a, f)

d = mul c, c

e = mul b, d

f = sub c, 1

ret b

d

c

e,f
b

a

Generate
Globals

LLVM IR
Pass

Analyzer

14

Machine-Code Generation
Overview

▶ Assume PIC and small code model (i.e. size of code+GOT+PLT < 2GB)

▶ Prologue with placeholder for frame size and callee-saved register pushes
and optional reg-save area for vararg functions

▶ Iterate over basic blocks and generate code directly into final code buffer
▶ Fusing is only done in forward direction

▶ icmp+br
▶ gep+load/store
▶ . . .

Generate
Globals

LLVM IR
Pass

Analyzer Code
Generation

15

Machine-Code Generation
Register Allocation

▶ Register Allocation is done together with instruction selection

▶ Greedy algorithm

▶ Assigns fixed registers to values with longer lifetimes

▶ Does not keep assignments saved for blocks with multiple outgoing edges
▶ PHI-Handling relatively standard:

▶ Only one PHI in target: Move value to stack slot or into fixed register if there is any
▶ For multiple PHIs:

▶ Sort topologically
▶ PHIs without a reader handled as above
▶ Remaining ones must be part of a cycle → break with temporary register

Generate
Globals

LLVM IR
Pass

Analyzer Code
Generation

16

Unwind/Exception Info

▶ Written out while compiling functions

▶ Frame pointer is always set up → only need to emit some info depending on
which callee-saved registers were pushed

▶ For (C++) exceptions, the Language-Specific Data Area (LSDA) can’t be linearily
generated

⇝ Collect parts of the LSDA while compiling and build completed LSDA at end of
every function

Generate
Globals

LLVM IR
Pass

Analyzer Code
Generation

Unwind Info

17

Object Generation

▶ Can generate ELF object
⇒ Pass to linker or ORC pipeline

▶ Can also directly map into memory

Generate
Globals

LLVM IR
Pass

Analyzer Code
Generation

Unwind Info
Object Gen/

Linking

1st Pass 2nd Pass 3rd Pass

18

Performance Results – Compile Time
SPEC CPU 2017 – Compared To LLVM O0 [s] – Ryzen 7950X 64GB RAM

L
LV

M
T
P
D
E

5.34

3.03

600
perl

L
LV

M
T
P
D
E

34.35

22.86

602
gcc

L
LV

M
T
P
D
E

0.12

0.09

605
mcf

L
LV

M
T
P
D
E

23.13

17.73

620
omnetpp

L
LV

M
T
P
D
E

53.27

38.34

623
xalanc

L
LV

M
T
P
D
E

2.47

1.38

625
x264

L
LV

M
T
P
D
E

0.35

0.28

631
deepsjeng

L
LV

M
T
P
D
E

3.21

1.64

641
leela

L
LV

M
T
P
D
E

0.9

0.63

657
xz

L
LV

M
T
P
D
E

13.66

9.55

—
average

Frontend Backend

19

Performance Results – Run Time
SPEC CPU 2017 – Relative To Clang – Ryzen 7950X 64GB RAM

600
perl

602
gcc

605
mcf

620
omnetpp

623
xalanc

625
x264

631
deepsjeng

641
leela

657
xz

average
0

0.2

0.4

0.6

0.8

1

1.2

20

Performance Results
TPCDS SF10 in Umbra – Only Backend – Ryzen 7950X 64GB RAM

0 100 200 300 400 500 600 700 800 900 1,000

LLVM

TPDE+JITLink

TPDE

DirectEmit

ms

Generate LLVM-IR CodeGen Linking

21

Performance Results
TPCDS SF10 – Looking at TPDE – Ryzen 7950X 64GB RAM

0 20 40 60 80 100 120 140 160

TPDE

ms

Generate LLVM-IR Global Generation LLVM IR Pass Analyzer
CodeGen Linking

22

Difficulties in LLVM-IR

▶ IR not really suitable for fast iteration ⇝ significant speedup achieved using the
linearization

▶ Generating globals is not trivial, especially with constant expressions

▶ Constant expressions in general are not easy to deal with (e.g. in PHI nodes)

▶ Arbitrary integer widths are really not funny (they also show up in weird places,
e.g. switches)

▶ In general, seems like IR allows a lot of semantics and each back-end supports
some opaque subset

▶ Some information for compilation encoded as metadata strings (fcmps)

23

Conclusion

▶ TPDE compiles typical subset of LLVM-IR in just three passes

▶ 10-20x faster compilation than LLVM-O0

▶ Execution speed comparable to LLVM-O0

▶ Backend itself is fairly small (∼ 15 kLOC)

▶ Easily plugged into existing users of the LLVM backend

