Developing An LLVM Backend For VLIW RISC-V Vector Extention Architectures

Hao-Chun Chang, Meng-Shiun Yu, Tai-Liang Chen,

Jhih-Kuan Lin, Jenq-Kuen Lee Department of Computer Science National Tsing-Hua University, Taiwan

VLIW RISC-V Vector Extension Architecture

LLVM Backend

a. Codegen flow

ResMII with LMUL Factor for Swing Modulo Scheduling

	iteration 1	iteration 2	iteration 3	iteration 4	iteration 5
cycle1	LD				
cycle2	VADD	LD			
cycle3	VMUL	VADD	LD		
cycle4	ST	VMUL	VADD	LD	
cycle5		ST	VMUL	VADD	LD
cycle6			ST	VMUL	VADD
cycle7				ST	VMUL
cycle8					ST
cycle9					

Assume each instruction latency is 1, the ResMII will be set to 1. However, the LMUL will group multiple registers and affect operation latency in some processor implementation.

The resource conflict might happened at cycle 3 when the latency of vector operation is larger than 1. As a result, the ResMII should be modified.

Algorithm 1: The algorithm to evaluate ResMII with con-				
sideration of LMUL factor				
Input	:The maximum register pressure: MaxPressure			
	number of spill register: S			
	Total Latnecy of vector unit instruction: LV			
	Tatal Latences of athen with LO			

In this code generation flow, we add DFAPacketizer to group instructions into an instruction bundle and rewrite RISCVAsmPrinter to emit instruction bundle with the custom instruction we use to imply the begining of the bundle.

b. Codegen example

Total Latency of other unit: LO			
parameter : The number of registers in the register file: <i>NR</i> =32			
Constant value : c			
LMUL factor that affects latency: LMUL_Fac			
Number of vector units: VectorUnits			
Number of other function units: OtherUnits			
Output : Feasible LMUL value: LMUL			
ResourceMII: ResMII			
1 begin			
2 $LMUL \leftarrow \frac{NR}{MaxPressure} \times \frac{c}{2^S}$			
3 if $LMUL \leq 1$ then			
4 $ LMUL \leftarrow 1$			
5 end			
$6 ResMII \leftarrow \max\{\frac{LV*LMUL_Fac}{VectorUnits}, \frac{LO}{OtherUnits}\}$			
7 end			

In this algorithm of deciding the feasible ResMII, we calculate the feasible LMUL first, and it is done by dividing the number of vector registers with the maximum register pressure and square of number of spill registers. Then the LMUL will be considered as a factor to get the feasible ResMII.

