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Analysis. The points-to analysis procedure is implemented using the MLIR dataflow 
framework, enabling the flow-sensitive analyses. When integrating the analysis into the 
framework runner, users can select their preferred lattice representation, or provide their 
own implementation, which determines the analysis algorithm applied.

Transform. The transformation step, provided by the user of the analysis tool, abstracts away point-to-irrelevant information by 
representing the program in the PoTATo dialect. Here, the user can opt for including field-sensitive operations and types in the 
resulting IR, toggling this aspect of the analysis. The tool does not mandate the user to lower the control flow operations and
                                                   function calls, as long as the source dialect implements relevant MLIR interfaces. Users only need  
                                                   to provide abstractions for pointer manipulation, or they can use the conversion from the LLVM.

Simplification. Leveraging the dialects's simplicity, we can apply canonicalization to 
reduce the size of the problem, thus accelerating the points-to analysis. A key step is 
constant folding, which eliminates irrelevant operations in the analyzed IR.

Result. Utilizing location metadata or VAST Tower, the domain-specific IR remains linked to 
its original representation, enabling querying of the analysis result via the MLIR data flow 
interface. Each IR location  is associated with a lattice value representing the analysis result. 

Leveraging the power of VAST Tower of 
IRs, we can precisely link the PoTATo IR 
to the original representation. Using 
this information in hand, we can proxy 
the aliasing queries about the program 
in the original IR and extract the 
information from the computed 
analysis. The proxy, after getting the 
mapping of the IRs, extracts the 
analysis results using the MLIR 
dataflow analysis framework and 
answers the users queries.

PoTATo is a tool for points-to analysis. 
Using a novel approach, we try to 
reduce the problem size to provide 
faster analysis without losing 
information. We have designed a 
simple MLIR dialect that models 
memory effects in the program. To 
simplify the problem, we apply 
compiler-style optimizations to the 
obtained IR. In cooperation with other 
tools, we then extract the analysis 
result back to the source IR.
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Goals of Points-to Analysis MLIR Dialect
Problem Simplification Flexibility
PoTATo streamlines the points-to analysis by 
reducing it to a conversion task into its specialized 
dialect. The dialect's simplicity facilitates the 
straightforward conversion of any MLIR program 
representation into it for subsequent analysis.

Encoding the points-to problem in a dialect 
enables the application of compiler optimizations 
to reduce the problem size. Furthermore, by 
keeping solely on essential information the 
complexity of the analyzer is also reduced.

Efficiency
PoTATo is built with adaptability in mind, 
enabling users to conduct a range of points-to 
analyses. By choosing the points-to lattice 
representation and adjusting the conversion 
process, users can customize the analysis.
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PoTATo Dialect
Field-Insensitive Dialect

Memory allocation abstracts all location creations for points-
to analysis, including both local stack or heap allocations. 

%var = pt.alloc : <type>
Memory dereference represents all operations that access 
memory content, such as the load operation in LLVM.

%val = pt.deref %var : <var-type> �� <val-type>
Memory assignment denotes writing to memory content, 
copying its points-to information into the content. It has similar 
semantics to the LLVM store operation.

pt.assign %dst = %src : <dst-type>, <src-type>
Copy abstracts all operations that do not alter points-to 
information. It transfers it from the source to the destination. 
Such operations are pointer casts and pointer arithmetic in the 
case of field-insensitive analysis.

%dst = pt.copy %srcs* : <src-types> �� <dst-type> 
Address operation is used to abstract operations that create 
references, suiting it to model more high-level manipulations 
with addresses like &val in C.

%addr = pt.address %var : <var-type> �� <addr-type>
Constant operations models all non-pointer values. The value-
less constant enables the efficient elimination of all points-to 
irrelevant computations. Whereas, a valued constant can be 
used to obtain values for more sensitive analyses.

%const = pt.const : <type>
%const = pt.valued_const <val> : <type>

Dataflow Reduction
Default Potato IR corresponds directly to the standard interpretation-based points-to 
analysis. Each source IR operation has a corresponding PoTATo IR operation, which 
transforms points-to sets. However, it includes numerous irrelevant operations for points-
to analysis, which have no impact on the analysis result. In particular, copies do not 
modify points-to information in this example.

We can streamline the points-to analysis by simplifying the IR using the common MLIR 
canonicalization mechanism. For instance, we can fuse (constant-fold) the points-to 
analysis metadata of all copies into a single state before dereferencing.

The analysis result can be obtained by following the chain of meta-locations. For example, 
if we have %o in LLVM, it corresponds to %o in the PT dialect. From there, we can trace to 
the fused location in simplified IR and retrieve the corresponding points-to set from %a.

1: %one = llvm.mlir.constant(1 : index) : i64
2: %a1  = llvm.alloca %one x i32 : (i64) �� !llvm.ptr<i32>
3: %i   = llvm.ptrtoint %a1 : !llvm.ptr<i32> to i64
4: %o   = llvm.add %i, %one : i64
5: %a2  = llvm.inttoptr %o : i64 to !llvm.ptr<i32>
6: %x   = llvm.load %a2 : !llvm.ptr<i32>

1: %one = pt.constant : i64
2: %a   = pt.alloc : !llvm.ptr<i32>
3: %i   = pt.copy %a : !llvm.ptr<i32> �� i64
4: %o   = pt.copy %i, %one : i64, i64 �� i64
5: %a2  = pt.copy %o : i64 �� !llvm.ptr<i32>
6: %x   = pt.deref %a2 : !llvm.ptr<i32> �� i32

State in: loc("potato.mlir":1)
  var0: %one = pt.constant : i64 �� {}
  ���
State in: loc("potato.mlir":3)
  var0: %one = pt.constant : i64 �� {}
  var1: %a   = pt.alloc : !llvm.ptr<i32> �� {mem_loc1}
  var2: %i   = pt.copy %a : !llvm.ptr<i32> �� i64 �� {mem_loc1}
  ���
State in: loc("potato.mlir":6)
  ���
  var4: %o  = pt.copy %i, %one : i64, i64 �� i64 �� {mem_loc1}
  var5: %a2 = pt.copy %o : i64 �� !llvm.ptr<i32> �� {mem_loc1}
  var6: %x  = pt.deref %a2 : !llvm.ptr<i32> �� i32 �� {}

State in: loc("simple.mlir":2)
  var0: %a  = pt.alloc : !llvm.ptr<i32> �� {mem_loc1}
  var1: %x  = pt.deref %a : !llvm.ptr<i32> �� i32 �� {}

1: %a= pt.alloc : !llvm.ptr<i32>
2: %x = pt.deref %a : !llvm.ptr<i32> �� i32
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