
MLIR Dialects
High-level dialect resembles a Clang AST–like
dialect and serves as the starting point for VAST,
retaining as much information as possible for
later stages of code generation.
Builtin dialect specifies Clang's C/C++ built-in
operations and types.
ABI dialect describes the mapping between
high-level types and the LLVM ABI.
Low-level dialect is akin to an LLVM dialect,
designed to be compatible with high-level
structured control flow and high-level types.
Core dialect defines generic interfaces and types
used in VAST, like symbols, functions, or scopes.
Meta dialect enables operations to be tagged
with user-defined locations (IDs) and connects
operations across the layers of the Tower of IRs.
Analyses dialects represent programs in
simplified representation for specific scenarios like
points-to analysis, devirtualization, invariants, etc.
Future dialects are planned to incorporate more
specific information, such as concurrency, libc,
library-specific abstractions, lifetimes, and more.

Explore on
Compiler Explorer

VAST is a Program Analysis–Focused Compiler
Fine-Grained Steps Program Abstractions
Various abstraction levels are useful for different
program analyses. VAST enables viewing source
code at various stages of translation from AST to
LLVM IR. Each step of the LLVM code generation
process is modeled as a distinct pass or a dialect.

Not all information is necessary for specific
analyses. A different source view can yield more
precise results and simplify analysis design.
For that, VAST supports user-defined program
abstractions (dialects) compatible with the rest.

To link results of low-level analysis to the source code
or to incorporate high-level structural insights into
low-level analysis, it is essential for VAST dialects
to maintain bidirectional provenance information
across representations.

Provenance

Compilation

Tower of IRs

Applications

Henrich Lauko, Lukáš Korenčik, and Robert Konicar
VAST: MLIR Compiler for C/C++

Fork m
e on GitHub

github.com/trailofbits/vast

Binary

High-level dialect

VAST IRs

LLVM IR

Clang AST

C/C++ Source

Proven
an

ce

D
ecom

pilation

Multi-layered

Interpreter

User

Transpiled IR

Transpiled source

Model IR

Analysis

vast-front -vast-emit-mlir=hl
vast-front -vast-emit-mlir=llvm

Provenance is embedded as location metadata in operations. Rather than directing to
the source location, these locations refer to the prior snapshots of generated MLIR.

VAST keeps snapshots of intermediate MLIR modules, also called the Tower of IRs. These allow us to
perform analysis on the most suitable level and make it easier to link analysis results back to the user.

MLIR provides tooling to create IRs for
transpilation to languages like Rust or newer
C/C++ versions. VAST can serve as a generator
for the most suitable IR for this task.

Modeling IRs streamline the program
analysis by eliminating unnecessary details,
focusing on specific aspects like aliasing or
function calls for devirtualization.

VAST is designed as a Clang driver
wrapper. It introduces a new AST
consumer for MLIR generation, guided
by two key principles:
1. Fine-grained code generation: VAST
differentiates itself by breaking down
the LLVM codegen process into distinct
MLIR passes and dialects, such as type
desugaring or ABI translation. This
approach not only facilitates easier
tracing of code provenance but also
allows stopping at the most suitable
representation for program analysis.
2. Commutativity of independent steps:
This allows independent codegen steps
to be interchangeable, fostering the
creation of interleaved high-level and
low-level code representations.
VAST leverages both specialized VAST
dialects and standard MLIR dialects,
culminating in the generation of LLVM
IR. Future developments aim to
incorporate ClangIR as a target dialect. Decompilation becomes simpler with VAST, as it offers IRs for granular steps. We can

progressively elevate control flow and type information to more expressive dialects.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted

as representing the official views or policies of the Department of Defense or the U.S. Government.

Disclaimer: This example simplifies the representation and omits types for
readability. For the full example, follow the QR code to Compiler Explorer.

#include <stdint.h>
uint32_t gcd(uint32_t a, uint32_t b) {
 while (b �� 0) {
 uint32_t temp = b;
 b = a % b;
 a = temp;
 }
 return a;
}

Each operation in the
Tower of IRs employs MLIR
locations to reference the
preceding layer, depicted
here through arrows for
illustrative purposes only,
with just a few examples
shown.

hl.typedef "uint32_t" : !hl.int<unsigned>
hl.func @gcd(
 %arg0: !hl.lvalue<!hl.typedef<"uint32_t"��,
 %arg1: !hl.lvalue<!hl.typedef<"uint32_t"��
) �� !hl.elaborated<!hl.typedef<"uint32_t"�� {
 hl.while {
 %2 = hl.ref %arg1 : !hl.lvalue<!hl.typedef<"uint32_t"��
 %3 = hl.implicit_cast %2 LValueToRValue
 %4 = hl.const #core.integer<0> : !hl.int
 %5 = hl.implicit_cast %4 IntegralCast
 %6 = hl.cmp ne %3, %5
 hl.cond.yield %6 : !hl.int
 } do {
 %2 = hl.var "temp" = { /� init ⁎/ }
 %3 = hl.ref %arg0 : !hl.lvalue<!hl.typedef<"uint32_t"��
 %4 = hl.implicit_cast %3 LValueToRValue
 %5 = hl.ref %arg1 : !hl.lvalue<!hl.typedef<"uint32_t"��
 %6 = hl.implicit_cast %5 LValueToRValue
 %7 = hl.urem %4, %6
 %8 = hl.assign %7 to %3
 /� ��� ⁎/
 }
 %0 = hl.ref %arg0 : !hl.lvalue<!hl.typedef<"uint32_t"��
 hl.return %0
}

Codegen through Clang AST
vast-front -vast-emit-mlir=hl

module attributes {dlti.dl_spec = #dlti.dl_spec<
 #dlti.dl_entry<!hl.int<unsigned >, vast.abi_align.key = 32, vast.dl.bw = 32>
>, vast.core.lang = C, vast.core.target_triple = "x86_64-pc-linux-gnu"} {
 hl.func @gcd(
 %arg0: !hl.lvalue<!hl.int<unsigned��, %arg1: !hl.lvalue<!hl.int<unsigned��
) �� !hl.int< unsigned > {
 /� high-level dialect with desugared types and resolved typedefs ⁎/
 %2 = hl.var "temp" : !hl.lvalue<!hl.int<unsigned��
 /� the rest of the function ⁎/
 hl.return %0 : !hl.int<unsigned>
 }

Simplify
vast-front -vast-emit-mlir=hl -vast-simplify

abi.func @vast.abi.gcd(%arg0: !hl.lvalue<ui32>, %arg1: !hl.lvalue<ui32>) {
 %0:2 = abi.prologue {
 %4 = abi.direct %arg0 : !hl.lvalue<ui32>
 %5 = abi.direct %arg1 : !hl.lvalue<ui32>
 abi.yield %4, %5 : !hl.lvalue<ui32>, !hl.lvalue<ui32>
 } : !hl.lvalue<ui32>, !hl.lvalue<ui32>
 %4 = hl.var "temp" : !hl.lvalue<ui32> = {
 %5 = hl.ref %0#1 : (!hl.lvalue<ui32>) �� !hl.lvalue<ui32>
 /� the rest of function with ABI transformed values ⁎/
 %3 = abi.epilogue { /� ��� ⁎/ } : ui32
 hl.return %3 : ui32

Emit ABI and use standard types
vast-opt --vast-hl-lower-types --vast-emit-abi

Emit LLVM dialect or LLVM IR
vast-front -vast-emit-mlir=llvm or vast-front -vast-emit-llvm

���

Lower high-level dialect
vast-opt --vast-hl-to-ll-vars --vast-hl-to-ll-cf ���

