VAST: MLIR Compiler for G/C++

Henrich Lauko, Lukas Korencik, and Robert Konicar

VAST is a Program Analysis—Focused Compiler

Fine-Grained Steps Provenance Program Abstractions

Various abstraction levels are useful for different To link results of low-level analysis to the source code Not all information is necessary for specific
program analyses. VAST enables viewing source or to incorporate high-level structural insights into analyses. A different source view can yield more
code at various stages of translation from AST to low-level analysis, it is essential for VAST dialects precise results and simplify analysis design.
LLVM IR. Each step of the LLVM code generation to maintain bidirectional provenance information For that, VAST supports user-defined program
process is modeled as a distinct pass or a dialect. aCross representations. abstractions (dialects) compatible with the rest.

Compilation Applications

IAST is designed as a Clang driver vast-front -vast-emit-mlir=hi User VAST keeps snapshots of intermediate MLIR modules, also called the Tower of IRs. These allow us to
wrapper. It introduces a new AST — vast-front -vast-emit-mlir=Ilvm perform analysis on the most suitable level and make it easier to link analysis results back to the user.
consumer for MLIR generation, guided

by two Key principles: Provenance is embedded as location metadata in operations. Rather than directing to
L. Fine-grained code generation: VAST C/C++ Source the source location, these locations refer to the prior snapshots of generated MLIR.

differentiates itself by breaking down
the LLVM codegen process into distinct
MLIR passes and dialects, such as type Transpiled source | MLIR provides tooling to create IRs for

desugoring or ABI transiation. This transpilation to languages like Rust or newer
approach not only facilitates easier .
C/C++ versions. VAST can serve as a generator

tracing of code provenance but also
allows stopping at the most suitable High-level dialect for the most suitable IR for this task.

representation for program analysis.
2. Commutativity of independent steps:
This allows independent codegen steps
: i VAST IRs

to be interchangeable, fostering the
creation of interleaved high-level and

Transpiled IR

Multi-layered
" B

Interpreter

@)
<
M
-
Q
-
(@)
®

D13e|1duwods

Modeling IRs streamline the program
low-level code representations analysis by eliminating unnecessary details,

- ocusing on specific aspects like aliasing or
VAST leverages both specialized VAST o J | | -
dialects and standard MLIR dialects, Analysis function calls for devirtualization.

culminating in the generation of LLVM
IR. Future developments aim to
incorporate ClangiR as a target dialect. Bina ry

Model IR

Decompilation becomes simpler with VAST, as it offers IRs for granular steps. We can
progressively elevate control flow and type information to more expressive dialects.

MLIR Dialects lower of IRs

module attributes {dlti.dl_spec = #dlti.dl_spec<

. . . —— #include <stdint.h on | : : : .
High-level dialect resembles a Clang AST-like Loiren b e o, L) 4 §3ViZ,05f//?§’33727§f56M1/ﬁ B

. . . while (b # 6) { : >, vast.core.lang = C, vast.core.target_triple = "x86_64-pc-linux-gnu
dialect and serves as the starting point for VAST, ¢ tea - b fféi??xf'ffg{?a}iff’ﬁ?;féﬁfx A1 fune Becd(
r ining as much information as possible for b=alkhb; here thou har/rows o %arg8: 'hl.lvalue<!hl.int<unsigned>>, %argl: 'hl.lvalue<!'hl.int<unsigned>> <

claining J , P J - onp; ///usz‘rai/veé;)urpmes/;n/y,) = !hl.int< unsigned > {
/Of@f Stages Of COO’G geﬂel’al“/()/”). ceturn a: W/'[h/'ugfgfewe)(amp/eg [* high-level dialect with desugared types and resolved typedefs =/
cras . o , L ’ shown. %2 = hl.var "temp" : 'hl.lvalue<!hl.int<unsigned> <
Builtin dialect specifies Clang's C/C++ built-in ; e the boct of fhe fumction o)
Ope/’a[/'ons and Z‘ypes —— hl.return %@ : !hl.int<unsigned> <
. . ' vast-front -vast-emit-mlir=hl }

ABI dialect describes the mapping between

' _ —d—t— hl.typedef "uint32_t" : !hl.int<unsigned>
h/gh /eVE/ O/IOES and the LL\/M AB/ hl.func @gcd(vast-opt --vast-hl-lower-types --vast-emit-abi
Low-level dialect is akin to an LLVM dialect, %argd: !h1.1lvalue<!hl.typedef<"uint32_t">, <

_ _ . _ %argl: 'hl.lvalue<'hl.typedef<"uint32_t"> < abi.func @vast.abi.gcd(%arg@: !'hl.lvalue<ui32>, %argl1: 'hl.lvalue<ui32>) {
deS/gned Z-O be COmIOOUb/e W/Z-h h/gh‘/e\/el) = !hl.elaborated<!hl.typedef<"uint32_t">» { %0:2 = abi.prologue {
structured control flow and high-level types. hi.while { = cbtalises Ll § e EEGRE
. . o %2 = hl.ref %argl : 'hl.lvalue<!'hl.typedef<"uint32_t"> 05 = abi.direct kargl : !hl.lvalue<ui32>
Core dialect defines generic interfaces and types %3 = hl.implicit_cast %2 LValueToRValue abi.yield %4, %5 : !hl.lvalue<ui32>, !hl.lvalue<ui32>
, , , %4 = hl.const #core.integer<®> : !hl.int } : 'hl.lvalue<uil32>, 'hl.lvalue<ui32>

used in VAST, like symbols, functions, or scopes. G5 - hl. fuplioit cact 4 IntogralCast T EE——
Meta dialect enab/es Operat/OnS Z’O be Z’Ogged % = hl.cmp ne %3, %5 %5 = hl.ref %0#1 : ('hl.lvalue<ui32>) —> !hl.lvalue<ui32>

' ' . hl.cond.yield %6 : 'hl.int [* the rest of function with ABI transformed values x/
with user-defined locations (IDs) and connects b do ¢ 43 = abi.epilogue { /* ... »/ } : ui32
operations across the layers of the Tower of IRs. — %2 = hl.var "temp" = { /* init «/ } < M.return & 3 ui32

. %3 = hl.ref %argd : 'hl.lvalue<!hl.typedef<"uint32_t">
Analyses dialects r epresent programs in % = hl.implicit_cast %3 LValueToRValue
—_— or T " vast-opt --vast-hl-to-1l-vars --vast-hl-to-1ll-cf ...
simplified representation for specific scenarios like o o it oot 8 et
points-to analysis, devirtualization, invariants, etc. %7 = hl.urem %4, %6
Future dialects are planned to incorporate more ,8 m'a,sgign TR Emit LLVM dialect or LLVM IR
o ' . et vast-front -vast-emit-mlir=1lvm or vast-front -vast-emit-1lvm
specific information, such as concurrency, libc, :
. - . . ' %0 = hl.ref %argd : !hl.lvalue<!hl.typedef<"uint32_t"> .) . ' N . .
libra ry-sp €C/f/C abstraction S, //fet/ mes, an d more. hl.return %0 < Disclaimer: This example simplifies the representation and omits types for
} readability. For the full example, follow the QR code to Compiler Explorer.

;/i 1
This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). EX p I O r e o n
. . 0[.' L The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted o
' o as representing the official views or policies of the Department of Defense or the U.S. Government. C o m p I I e r EX p I O re r
I 0

of

