
1

A Wishlist for Faster LLVM Back-Ends

Alexis Engelke
engelke@tum.de

(with contributions from Tobias Stadler)

Chair of Data Science and Engineering
Department of Computer Science
Technical University of Munich

EuroLLVM ’24, Vienna, AT, 2024-04-11



2

Why Fast Compilation?

▶ Fast compilation is important, especially at -O0

▶ JIT compilation: databases, WebAssembly runtimes, . . .
▶ LLVM often used anyway, as high-quality compiler
▶ Separate back-end increases maintenance cost
▶ Fast baseline compilation ⇒ low startup latency

▶ Developer experience: faster develop–test roundtrip
▶ (Also needs to consider front-end)

This talk:

Analyze -O0 back-end pipeline and outline possible improvements

Measurement data: x86-64 back-end; workload: compiling Umbra TPC-DS (sf=1) queries; LLVM commit d0dcf06ab872



2

Why Fast Compilation?

▶ Fast compilation is important, especially at -O0

▶ JIT compilation: databases, WebAssembly runtimes, . . .
▶ LLVM often used anyway, as high-quality compiler
▶ Separate back-end increases maintenance cost
▶ Fast baseline compilation ⇒ low startup latency

▶ Developer experience: faster develop–test roundtrip
▶ (Also needs to consider front-end)

This talk:

Analyze -O0 back-end pipeline and outline possible improvements

Measurement data: x86-64 back-end; workload: compiling Umbra TPC-DS (sf=1) queries; LLVM commit d0dcf06ab872



3

Step 1: LLVM-IR Passes

IR
Pass

▶ Prepare LLVM IR for back-end, 15–20 passes
▶ Lower constant intrinsics (is.constant, objectsize),

expand atomic operations, large divisions, . . .
▶ x86: lower AMX types, float conversions

▶ Passes typically look for some simple instruction pattern and rewrite it
▶ Iterating over LLVM-IR is not free: ∼0.3% of compile time per iter.
▶ Many of the patterns occur rarely/not at all, but passes always run

⇝ Merge passes with shared pattern matching infrastructure?
⇝ Only run passes when required (or add an option to disable)?



3

Step 1: LLVM-IR Passes

IR
Pass

▶ Prepare LLVM IR for back-end, 15–20 passes
▶ Lower constant intrinsics (is.constant, objectsize),

expand atomic operations, large divisions, . . .
▶ x86: lower AMX types, float conversions

▶ Passes typically look for some simple instruction pattern and rewrite it
▶ Iterating over LLVM-IR is not free: ∼0.3% of compile time per iter.
▶ Many of the patterns occur rarely/not at all, but passes always run

⇝ Merge passes with shared pattern matching infrastructure?
⇝ Only run passes when required (or add an option to disable)?



3

Step 1: LLVM-IR Passes

IR
Pass

▶ Prepare LLVM IR for back-end, 15–20 passes
▶ Lower constant intrinsics (is.constant, objectsize),

expand atomic operations, large divisions, . . .
▶ x86: lower AMX types, float conversions

▶ Passes typically look for some simple instruction pattern and rewrite it
▶ Iterating over LLVM-IR is not free: ∼0.3% of compile time per iter.
▶ Many of the patterns occur rarely/not at all, but passes always run

⇝ Merge passes with shared pattern matching infrastructure?
⇝ Only run passes when required (or add an option to disable)?



4

Step 2: Instruction Selection

IR
Pass

ISel

▶ Transform LLVM IR into SSA-based Machine IR
▶ FastISel: handle common cases in single step ←we want this
▶ SelectionDAG: rewrite to graph, match patterns, schedule into MIR
▶ GlobalISel: rewrite to generic MIR, rewrite gMIR twice, rewrite to MIR

▶ ISel performance is only ok-ish when staying on the happy FastISel path

⇝ Somehow derive single-step ISel for GlobalISel?
▶ Downsides: maintenance effort, testing, etc.

⇝ Please don’t prematurely replace FastISel with GlobalISel



4

Step 2: Instruction Selection

IR
Pass

ISel

▶ Transform LLVM IR into SSA-based Machine IR
▶ FastISel: handle common cases in single step ←we want this
▶ SelectionDAG: rewrite to graph, match patterns, schedule into MIR
▶ GlobalISel: rewrite to generic MIR, rewrite gMIR twice, rewrite to MIR

▶ ISel performance is only ok-ish when staying on the happy FastISel path

⇝ Somehow derive single-step ISel for GlobalISel?
▶ Downsides: maintenance effort, testing, etc.

⇝ Please don’t prematurely replace FastISel with GlobalISel



4

Step 2: Instruction Selection

IR
Pass

ISel

▶ Transform LLVM IR into SSA-based Machine IR
▶ FastISel: handle common cases in single step ←we want this
▶ SelectionDAG: rewrite to graph, match patterns, schedule into MIR
▶ GlobalISel: rewrite to generic MIR, rewrite gMIR twice, rewrite to MIR

▶ ISel performance is only ok-ish when staying on the happy FastISel path

⇝ Somehow derive single-step ISel for GlobalISel?
▶ Downsides: maintenance effort, testing, etc.

⇝ Please don’t prematurely replace FastISel with GlobalISel



5

Step 3: (Up To) Register Allocation

IR
Pass

ISel RegAlloc

▶ Several passes to assign registers and stack slots
▶ Allocate stack slots, destruct SSA, handle two-address instructions
▶ Actual register allocation: linear and greedy (RegAllocFast)
▶ x86: handle flag copies (needs DomTree), AMX tiles, FPU stack

▶ Multiple rewrites of Machine IR are expensive

⇝ Don’t rewrite MIR that often?
▶ Would require larger effort, probably not realistic



5

Step 3: (Up To) Register Allocation

IR
Pass

ISel RegAlloc

▶ Several passes to assign registers and stack slots
▶ Allocate stack slots, destruct SSA, handle two-address instructions
▶ Actual register allocation: linear and greedy (RegAllocFast)
▶ x86: handle flag copies (needs DomTree), AMX tiles, FPU stack

▶ Multiple rewrites of Machine IR are expensive

⇝ Don’t rewrite MIR that often?
▶ Would require larger effort, probably not realistic



5

Step 3: (Up To) Register Allocation

IR
Pass

ISel RegAlloc

▶ Several passes to assign registers and stack slots
▶ Allocate stack slots, destruct SSA, handle two-address instructions
▶ Actual register allocation: linear and greedy (RegAllocFast)
▶ x86: handle flag copies (needs DomTree), AMX tiles, FPU stack

▶ Multiple rewrites of Machine IR are expensive

⇝ Don’t rewrite MIR that often?
▶ Would require larger effort, probably not realistic



6

Step 4: Miscellaneous Changes and Fix-ups

IR
Pass

ISel RegAlloc Other
Passes

▶ Insert prologue/epilogue and rewrite stack references
▶ Dozens of mostly target-specific passes

▶ Insert CFI instructions, patchable-function
▶ x86: add vzeroupper, compress encoding / AArch64: errata workarounds, . . .

▶ Most passes are individually cheap, several do typically nothing
▶ But: adds up nonetheless – are all passes strictly required?

▶ Example: at -O0 we don’t care about EVEX-to-VEX compression

⇝ Reduce number of passes?



6

Step 4: Miscellaneous Changes and Fix-ups

IR
Pass

ISel RegAlloc Other
Passes

▶ Insert prologue/epilogue and rewrite stack references
▶ Dozens of mostly target-specific passes

▶ Insert CFI instructions, patchable-function
▶ x86: add vzeroupper, compress encoding / AArch64: errata workarounds, . . .

▶ Most passes are individually cheap, several do typically nothing
▶ But: adds up nonetheless – are all passes strictly required?

▶ Example: at -O0 we don’t care about EVEX-to-VEX compression

⇝ Reduce number of passes?



6

Step 4: Miscellaneous Changes and Fix-ups

IR
Pass

ISel RegAlloc Other
Passes

▶ Insert prologue/epilogue and rewrite stack references
▶ Dozens of mostly target-specific passes

▶ Insert CFI instructions, patchable-function
▶ x86: add vzeroupper, compress encoding / AArch64: errata workarounds, . . .

▶ Most passes are individually cheap, several do typically nothing
▶ But: adds up nonetheless – are all passes strictly required?

▶ Example: at -O0 we don’t care about EVEX-to-VEX compression

⇝ Reduce number of passes?



7

Interlude: Miscellaneous

IR
Pass

ISel RegAlloc Other
Passes

Misc.
Overhead

▶ ∼5% spent in legacy pass manager infrastructure
▶ @paperchalice and others restarted porting efforts towards new PM

▶ ∼3% spent in MachineInstr::addOperand
▶ ∼1% spent in de-allocating LLVM IR
▶ ∼1% spent in de-allocating Machine IR

▶ ∼2% overhead due to time measurements



7

Interlude: Miscellaneous

IR
Pass

ISel RegAlloc Other
Passes

Misc.
Overhead

▶ ∼5% spent in legacy pass manager infrastructure
▶ @paperchalice and others restarted porting efforts towards new PM

▶ ∼3% spent in MachineInstr::addOperand

▶ ∼1% spent in de-allocating LLVM IR
▶ ∼1% spent in de-allocating Machine IR

▶ ∼2% overhead due to time measurements



7

Interlude: Miscellaneous

IR
Pass

ISel RegAlloc Other
Passes

Misc.
Overhead

▶ ∼5% spent in legacy pass manager infrastructure
▶ @paperchalice and others restarted porting efforts towards new PM

▶ ∼3% spent in MachineInstr::addOperand
▶ ∼1% spent in de-allocating LLVM IR
▶ ∼1% spent in de-allocating Machine IR

▶ ∼2% overhead due to time measurements



7

Interlude: Miscellaneous

IR
Pass

ISel RegAlloc Other
Passes

Misc.
Overhead

▶ ∼5% spent in legacy pass manager infrastructure
▶ @paperchalice and others restarted porting efforts towards new PM

▶ ∼3% spent in MachineInstr::addOperand
▶ ∼1% spent in de-allocating LLVM IR
▶ ∼1% spent in de-allocating Machine IR

▶ ∼2% overhead due to time measurements



8

Step 5: Emit Machine Code to Object File

IR
Pass

ISel RegAlloc Other
Passes

Misc.
Overhead AsmPrinter

▶ AsmPrinter: encode instructions and create object (or asm) file

▶ Fairly slow, especially on x86
▶ Every instruction transformed MIR→MC→Binary
▶ Lots of hooks and virtual function calls per instruction

▶ Abstraction comes at a price. . .
▶ All basic blocks get string labels, even for object files

⇝ Reduce hooking points and abstractions?



8

Step 5: Emit Machine Code to Object File

IR
Pass

ISel RegAlloc Other
Passes

Misc.
Overhead AsmPrinter

▶ AsmPrinter: encode instructions and create object (or asm) file

▶ Fairly slow, especially on x86
▶ Every instruction transformed MIR→MC→Binary
▶ Lots of hooks and virtual function calls per instruction

▶ Abstraction comes at a price. . .
▶ All basic blocks get string labels, even for object files

⇝ Reduce hooking points and abstractions?



8

Step 5: Emit Machine Code to Object File

IR
Pass

ISel RegAlloc Other
Passes

Misc.
Overhead AsmPrinter

▶ AsmPrinter: encode instructions and create object (or asm) file

▶ Fairly slow, especially on x86
▶ Every instruction transformed MIR→MC→Binary
▶ Lots of hooks and virtual function calls per instruction

▶ Abstraction comes at a price. . .
▶ All basic blocks get string labels, even for object files

⇝ Reduce hooking points and abstractions?



9

Step 6: JIT-Linking

IR
Pass

ISel RegAlloc Other
Passes

Misc.
Overhead AsmPrinter

JIT-
Link

▶ Standard back-end pipeline creates in-memory (ELF) object file
▶ JITLink maps and relocates object files into a process

▶ ELF file generation and parsing unnecessary
▶ Processing symbols and relocations is slow

⇝ MCJITStreamer for compiling to process memory?
▶ Benefits: directly resolve symbols, keep fixups in same data structures, . . .
▶ Focus on common subset – many JIT-codes don’t use complex features



9

Step 6: JIT-Linking

IR
Pass

ISel RegAlloc Other
Passes

Misc.
Overhead AsmPrinter

JIT-
Link

▶ Standard back-end pipeline creates in-memory (ELF) object file
▶ JITLink maps and relocates object files into a process

▶ ELF file generation and parsing unnecessary
▶ Processing symbols and relocations is slow

⇝ MCJITStreamer for compiling to process memory?
▶ Benefits: directly resolve symbols, keep fixups in same data structures, . . .
▶ Focus on common subset – many JIT-codes don’t use complex features



9

Step 6: JIT-Linking

IR
Pass

ISel RegAlloc Other
Passes

Misc.
Overhead AsmPrinter

JIT-
Link

▶ Standard back-end pipeline creates in-memory (ELF) object file
▶ JITLink maps and relocates object files into a process

▶ ELF file generation and parsing unnecessary
▶ Processing symbols and relocations is slow

⇝ MCJITStreamer for compiling to process memory?
▶ Benefits: directly resolve symbols, keep fixups in same data structures, . . .
▶ Focus on common subset – many JIT-codes don’t use complex features



10

Key Take-Aways

IR
Pass

ISel RegAlloc Other
Passes

Misc.
Overhead AsmPrinter

JIT-
Link

▶ Keep number of passes in -O0 back-end low
▶ Omission, merging, or feature-sensitive execution

▶ Finish porting back-end to new pass manager
▶ Keep FastISel(-like) instruction selector

▶ Rewriting IR is fairly expensive
▶ Iterating over IR is not cheap

▶ JIT: Better integration of AsmPrinter and linker



10

Key Take-Aways

IR
Pass

ISel RegAlloc Other
Passes

Misc.
Overhead AsmPrinter

JIT-
Link

▶ Keep number of passes in -O0 back-end low
▶ Omission, merging, or feature-sensitive execution

▶ Finish porting back-end to new pass manager
▶ Keep FastISel(-like) instruction selector

▶ Rewriting IR is fairly expensive
▶ Iterating over IR is not cheap

▶ JIT: Better integration of AsmPrinter and linker



10

Key Take-Aways

IR
Pass

ISel RegAlloc Other
Passes

Misc.
Overhead AsmPrinter

JIT-
Link

▶ Keep number of passes in -O0 back-end low
▶ Omission, merging, or feature-sensitive execution

▶ Finish porting back-end to new pass manager
▶ Keep FastISel(-like) instruction selector

▶ Rewriting IR is fairly expensive
▶ Iterating over IR is not cheap

▶ JIT: Better integration of AsmPrinter and linker



11

One more thing. . .

▶ Over 20+ years, LLVM accumulated features and abstractions
▶ Most programs don’t need most of that

Should we start over from scratch?

▶ Prototypical LLVM back-end:1 10–20x comptime speedup, -O0 performance
▶ Focus on common subset; 3 passes; single-step LLVM-IR → machine code

1https://llvm.org/devmtg/2024-03/slides/llvm-fast-backend.pdf

https://llvm.org/devmtg/2024-03/slides/llvm-fast-backend.pdf


11

One more thing. . .

▶ Over 20+ years, LLVM accumulated features and abstractions
▶ Most programs don’t need most of that

Should we start over from scratch?

▶ Prototypical LLVM back-end:1 10–20x comptime speedup, -O0 performance
▶ Focus on common subset; 3 passes; single-step LLVM-IR → machine code

1https://llvm.org/devmtg/2024-03/slides/llvm-fast-backend.pdf

https://llvm.org/devmtg/2024-03/slides/llvm-fast-backend.pdf


11

One more thing. . .

▶ Over 20+ years, LLVM accumulated features and abstractions
▶ Most programs don’t need most of that

Should we start over from scratch?

▶ Prototypical LLVM back-end:1 10–20x comptime speedup, -O0 performance
▶ Focus on common subset; 3 passes; single-step LLVM-IR → machine code

1https://llvm.org/devmtg/2024-03/slides/llvm-fast-backend.pdf

https://llvm.org/devmtg/2024-03/slides/llvm-fast-backend.pdf


11

One more thing. . .

▶ Over 20+ years, LLVM accumulated features and abstractions
▶ Most programs don’t need most of that

Should we start over from scratch?

▶ Prototypical LLVM back-end:1 10–20x comptime speedup, -O0 performance
▶ Focus on common subset; 3 passes; single-step LLVM-IR → machine code

1https://llvm.org/devmtg/2024-03/slides/llvm-fast-backend.pdf

https://llvm.org/devmtg/2024-03/slides/llvm-fast-backend.pdf

