
Loop Iteration Space

Splitting

Ashutosh Nema, Anupama Rasale, Venkataramanan

Kumar, Raghesh Aloor

AMD Compilers Team

2 |

[Public]

Loop Splitting

• Loop iteration space splitting is the process of dividing a loop into several

smaller loops, each handling a portion of the original loop's iterations

• LLVM currently includes a pass called InductiveRangeCheckElimination that
performs loop splitting to eliminate range checks

3 |

[Public]

Loop Splitting

• The InductiveRangeCheckElimination

pass divides a loop's iteration space into

separate ranges, ensuring that the loop

within the split loop segment doesn't

require range checks

• However, the pass has limited

applicability since its goal is solely to

remove checks performed on induction

variables

len = < known positive >

 for (i = 0; i < n; i++) {

 if (0 <= i && i < len) {

 do_something();

 } else {

 throw_out_of_bounds();

 }

 }

 To

 len = < known positive >

 limit = smin(n, len)

 // no first segment

 for (i = 0; i < limit; i++) {

if (0 <= i && i < len) {

// Check is not required

// This block can execute unconditionally

do_something();

} else {

throw_out_of_bounds();

}

 }

 for (i = limit; i < n; i++) {

if (0 <= i && i < len) {

do_something();

} else {

// Check is not required

// This block can execute unconditionally

throw_out_of_bounds();

}

 }

The code highlighted in RED will

get eliminated, only code

highlighted in GREEN will

remain.

4 |

[Public]

Loop Splitting

• Beyond the current method of eliminating induction range checks, there are additional scenarios

where employing loop splitting could facilitate further optimizations

• Here are some potential areas where loop splitting could be beneficial:

• Performing Memory Alignment Checks for generating NTStores

• Facilitating Multi-Exit Loop Vectorization

• Eliminating fixed-point memory dependencies

• These possibilities highlight the necessity of incorporating loop splitting as a versatile utility for

optimization purposes

5 |

[Public]

Memory Alignment Checks For NTStores generation

Nontemporal stores or streaming stores avoid writing to the cache line and writes directly to memory

The challenge in using the vector variant (vmovntpd), is that the store address had to be aligned to

16/32/64-byte boundary

6 |

[Public]

Memory Alignment Checks For NTStores generation

• There is a necessity to

partition the loops into

two subloops. The first

subloop will peel off a

few iterations, ensuring

that the memory

accesses for the second

loop are aligned as

needed

double a[STREAM_ARRAY_SIZE];

double b[STREAM_ARRAY_SIZE];

double c[STREAM_ARRAY_SIZE];

for (i=0; i<STREAM_ARRAY_SIZE;i++)

 c[i] = a[i] + b[i] * scalar

To:

PeelFactor = Compute the steps required to go to

 next 32/64-byte address from the start

 address of array “c[i]”

 PeelLoopCount = MIN(PeelFactor,

STREAM_ARRAY_SIZE)

for (i = 0; i< PeelLoopCount; i++)

c[i] = a[i] + b[i] * scalar

for (i = PeelLoopCount; i<STREAM_ARRAY_SIZE; i++)

c[i] = a[i] + b[i] * scalar

Peeled Loop

Loop will be

vectorized with

vmovntpd

7 |

[Public]

Multi Exit Loop Vectorization

• At present, the LLVM loop vectorizer doesn't accommodate loops with multiple exits, potentially

leading to missed optimization chances

• There have been discussions in the past about the necessity of extending the loop vectorizer to

address cases with multiple exits:

• https://lists.llvm.org/pipermail/llvm-dev/2019-September/134998.html

• https://github.com/preames/public-notes/blob/master/multiple-exit-vectorization.rst

• This poses a challenge in scenarios where the exit condition depends on a memory access.

Cases where the exit is taken between start and end of a vector iteration, the vector load

instruction may access memory beyond its allocated range, potentially leading to a runtime

application crash

• The AMD AOCC (AMD Optimizing C/C++ and Fortran Compilers) extends the loop vectorizer to

include support for multi-exit vectorization

https://lists.llvm.org/pipermail/llvm-dev/2019-September/134998.html
https://github.com/preames/public-notes/blob/master/multiple-exit-vectorization.rst

8 |

[Public]

Multi Exit Loop Vectorization

• Having multiple exits in a vector loop presents

a safety challenge for memory accesses

• Specifically, if a vector load accesses a

memory location beyond its allocated point,

there is a risk of crossing the page boundary

at runtime, potentially leading to an application

crash

• Consider following assumptions:

• Memory allocated for array A is 10

• N = 12, Vector Factor = 4

• Early exit condition becomes true when i = 8

• Now, in the vectorized loop, when vector loop iteration is

2, it loads (A[8], A[9], A[10] and A[11])

• This may result in the application crash as 10th and 11th

locations of A are not allocated

9 |

[Public]

Multi Exit Loop Vectorization

• It's essential to guarantee that the start address for memory locations accessed in a vector loop is a

multiple of the vector factor

• In AOCC, we introduce a runtime check to verify this condition. If necessary, we split or peel off a few

iterations so that for the remaining iterations, memory accesses conform to the requirement of being

multiples of the vector factor

• This solution is limited to scenarios where the loop's exit condition depends on a single memory access

10 |

[Public]

Fixed Point Memory Dependencies

• Fixed-point memory dependencies refer to memory dependencies that arise when working with
fixed memory location access in a loop

• Example:

• Compiler optimization such as auto vectorization in presence of fixed-point memory
dependencies are avoided and results in significant loss of application performance opportunities

The memory load by

A[5] creates a

memory dependency

for store by A[i]

11 |

[Public]

Fixed Point Memory Dependencies

A

A[0]

A[1]

A[2]

A[3]

A[4]

A[5]

A[6]

A[7]

A

A[5]

A[5]

A[5]

A[5]

A[5]

A[5]

A[5]

A[5]

B

B[0]

B[1]

B[2]

B[3]

B[4]

B[5]

B[6]

B[7]

C

C[0]

C[1]

C[2]

C[3]

C[4]

C[5]

C[6]

C[7]

= + +

Please note: The vector for

A[5] for the last two vector

lanes has the stale values

as the memory location has

updated

This creates a memory

dependency and prevents

vectorization

12 |

[Public]

Fixed Point Memory Dependencies

• The elimination of fixed-point memory dependencies is crucial to enable the key optimizations

like loop vectorization

• This memory dependency is limited to a single iteration or a set of iterations as it deal with fixed point
memory access

• Identify such a dependency and deploy loop splitting to separate the memory dependent iteration and
nondependent iteration into separate sub loops

13 |

[Public]

Fixed Point Memory Dependencies

• Loop iteration space splitting

involves breaking a single loop

into multiple smaller loops,

each processing a subset of

the original loop's iterations

for (int i = 0; i <= len; i++) {

 A[i] = A[5] + B[i] + C[i];

}

Loop Split to Eliminate Dependency:

MIN1 = MIN (len, 4)

for (int i = 0; i <= MIN1; i++) {

 A[i] = A[5] + B[i] + C[i]; // A[5] is invariant and it can be hoisted

}

MIN2 = MIN (len, 5)

for (i = MIN1+1; i <= MIN2; i++) {

 A[i] = A[5] + B[i] + C[i];

}

for (i = MIN2+1; i <= len; i++) {

 A[i] = A[5] + B[i] + C[i]; // A[5] is invariant and it can be hoisted

}

Loop without

any

dependency

Loop without

any

dependency

14 |

[Public]

Loop Splitting Utility

• In AOCC, we've implemented

LoopSplitting as a utility

• Its primary divided into following

phases:

• Legality

• Partition Definition

• Transform

Legality:

• Loop Structure
Legality (i.e., it
should have
preheader,
dedicated exits,
unique
backedge,
latch, etc.)

Partition
Definition:

• Define sub loop
ranges using
SCEV

Transform:

• Transform by
splitting the
given loop into
various sub
loops

15 |

[Public]

Loop Splitting Utility

• Example:

How loop splitting utility is invoked Split Loops

16 |

[Public]

Summary

• Loop iteration space splitting entails dividing a single loop into multiple smaller loops, each

handling a subset of the original loop's iterations

• Loop splitting holds potential for enabling various optimization opportunities

• In AOCC, we've implemented LoopSplitting as a utility and aim to integrate it into the community

LLVM

17 |

[Public]

Copyright and disclaimer
 ©2024 Advanced Micro Devices, Inc. All rights reserved.

 AMD, the AMD Arrow logo, [insert all other AMD trademarks used in the material IN ALPHABETICAL ORDER here per AMD's Guidelines on Using Trademark

Notice and Attribution] and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for

identification purposes only and may be trademarks of their respective companies.

 The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap

changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD

assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes

from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

 THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND

ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM

THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Slide 1: Loop Iteration Space Splitting
	Slide 2: Loop Splitting
	Slide 3: Loop Splitting
	Slide 4: Loop Splitting
	Slide 5: Memory Alignment Checks For NTStores generation
	Slide 6: Memory Alignment Checks For NTStores generation
	Slide 7: Multi Exit Loop Vectorization
	Slide 8: Multi Exit Loop Vectorization
	Slide 9: Multi Exit Loop Vectorization
	Slide 10: Fixed Point Memory Dependencies
	Slide 11: Fixed Point Memory Dependencies
	Slide 12: Fixed Point Memory Dependencies
	Slide 13: Fixed Point Memory Dependencies
	Slide 14: Loop Splitting Utility
	Slide 15: Loop Splitting Utility
	Slide 16: Summary
	Slide 17: Copyright and disclaimer
	Slide 18

