
LLDB:
What’s in a register?
David Spickett - Arm / Assigned to Linaro

Disassembly
If it did not exist, someone would invent it.

Do not need to read the manual every time.

$./bin/llvm-mc --triple aarch64-linux-unknown-gnu --disassemble <<<
"0xa0 0x01 0x00 0x54"
 .text
 b.eq #52

Branch If Equal

subs x0, x0, x1 // Z = x0 == x1
b.eq #52 // Branch if Z is 1

● No explicit operands
● Flags are implicit operands to the branch

Flags also in the “Current Program Status register” (CPSR).

CPSR

(lldb) register read cpsr
 cpsr = 0x60001000

13,000 pages of manual await you.

There must be a better way…

(output is from LLDB 17.0.6)

Debug Target

GDB
Register fields included in the XML target description.

https://sourceware.org/gdb/current/onlinedocs/gdb.html/Target-Description-Format.html

gdbserver

debugee

Debugger Host

gdb
<XML>

https://sourceware.org/gdb/current/onlinedocs/gdb.html/Target-Description-Format.html

Register Fields
<flags id="cpsr_flags" size="4">
 <field name="N" start="31" end="31"/>
 ...
 <field name="EL" start="2" end="3"/>
 <field name="SP" start="0" end="0"/>
</flags>
<reg name="cpsr" bitsize="32" ... type="cpsr_flags" .../>

● name
● start (least significant bit)
● end (most significant bit)
● Set reg “type” to flags “id”

GDB

(gdb) info registers cpsr
cpsr 0x60001000 [EL=0 SSBS C Z]

(single bit fields that are 0 are omitted)

LLDB Catches Up
✔ Uses target XML
✔ Can print rich types for variables

❌ Parses the <flags> elements from target XML
 (not covered here, libXML handles this)
❌ Can shows registers as rich types

(lldb) p n
(Node) {
 data = 1
 next = NULL
}

struct Node {
 unsigned data;
 struct Node *next;
};

The Prototype

● XML parsing works
● Manually building the table of fields

(lldb) register read cpsr
 cpsr = 0x60001000
| N | Z | C | V | TCO | DIT | UAO | PAN | SS | IL | SSBS | BTYPE | D | ...
| 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | ...

RFC Feedback
“Would it be much harder to read if we treated the cpsr as a “fake structure” and presented the
fields as we would any other structure?”
 - Jim Ingham [0]

● Reuse the existing type printing code
● Get formatting for free

[0] https://discourse.llvm.org/t/rfc-showing-register-fields-in-lldb/64676/2

https://discourse.llvm.org/t/rfc-showing-register-fields-in-lldb/64676/2

Fake Structures

<flags id="cpsr_flags" size="4">
 <field name="N" start="31" end="31"/>
 <field name="SP" start="0" end="0"/>
</flags>

struct cpsr_flags {
 uint32_t N: 1;
 uint32_t : 30;
 uint32_t SP: 1;
};

● Each field becomes a struct member.
● Use Clang’s Abstract Syntax Tree (AST) to build the type.
● Print it as if it were a variable.

Build / Debug Cycle

struct Node {
 unsigned data;
 struct Node *next;
};

TranslationUnitDecl

`-RecordDecl ... struct

 Node definition...

DW_TAG_structure_type
 DW_AT_name ("Node")
 DW_AT_...

(lldb) p n
(Node) {
 data = 1
 next = NULL
}

C AST DWARF

Object
FileClang

LLDB

DW_TAG_structure_type
 DW_AT_name ("Node")
 DW_AT_...

DWARF
TranslationUnitDecl

`-RecordDecl ... struct

 Node definition...

AST

What we need for registers

Register Printing

= (N = 0,

 Z = 1,

 ...

lldb-server
<flags id="cpsr_flags" ...>
 <...>
</flags>

Target XML
TranslationUnitDecl

`-RecordDecl struct cpsr_flags

definition

 |-FieldDecl ...

AST

lldb

Requirements
● Same field order regardless of LLDB’s host endian.

● Match the architecture manual (most significant bit on the left).

Arm® Architecture Reference Manual for A-profile architecture “C5.2.18 SPSR_EL1”

Implementation Defined Behaviour
● Do bitfields straddle the “storage unit” boundary,

or move into a new unit?
 (a unit is some number of bytes)

Unit 1 F1 F1

F2

Unit 2 F2
Unit
boundary

Storage Units

Unit 1 N

<padding>

SP

struct cpsr_flags {
 uint32_t N: 1;
 uint32_t : 30;
 uint32_t SP: 1;
};

● Solution: each register is 1 storage unit

Implementation Defined Behaviour #2
● What is the order within a unit?

Unit 1 F1 F2

F2 F1

Field Order
● Clang’s pre-codegen order is “big endian”

(first member occupies most significant bit)

● Matches architecture manual ✔
● Works for big endian targets ✔
● Works for little endian targets ❌

struct cpsr_flags {
 uint32_t N: 1;
 uint32_t : 30;
 uint32_t SP: 1;
};

31 N

… …

0 SP

Swap #1: Field Order
Fit little endian values into the “big endian” struct.

 [A][B][C]
 0b[10101][10][1]

 [C][B][A]
 0b[1][10][10101]

Field positions change, field values do not.

Swap #2: Endian

Host
(endian: host)

LLDB

Clang Type System
(endian: target)

● Registers do not have an endian.
● Pretend the register is in target memory.
● Target memory must be in target endian.

Byte 1 Byte 2 Byte 3 Byte 4

Byte 4 Byte 3 Byte 1 Byte 1

The Result
(lldb) register read cpsr

 cpsr = 0x60001000

 = (N = 0, Z = 1, C = 1, V = 0, SS = 0, IL = 0, SSBS = 1, D = 0, A = 0, I =
0, F = 0, nRW = 0, EL = 0, SP = 0)

Arm® Architecture Reference Manual for A-profile architecture “C5.2.18 SPSR_EL1”

(differences from the manual are for usability reasons)

Back to the Branch

subs x0, x0, x1 // Z = x0 == x1
b.eq #52 // Branch if Z is 1

(lldb) register read cpsr

 cpsr = 0x60001000

 = (N = 0, Z = 1, C = 1, ...)

The branch will be taken.

Is It Done?
LLDB 18 fully supports this on AArch64 Linux.

Also works with other debug servers:
● gdbserver
● mGBA Gameboy Advance Emulator [0]

Please contribute support for your favourite architecture!

[0] https://github.com/mgba-emu/mgba

https://github.com/mgba-emu/mgba

Thank you

