
© 2024 Arm A
I-

ge
n

er
a

te
d

 i
m

a
geOliver Stannard

2024-04-10

Practical fuzzing for 
C/C++ compilers

arm-public-2024-template - 
Copy



2 © 2024 Arm

Overview

Random code generators
• csmith, yarpgen
• cctest

Running fuzzers
• Compiler option selection
• Reducing & reporting bugs
• Dealing with expected failures



3 © 2024 Arm

What do I mean by "practical"?

Aiming to find high-priority bugs
o Miscompilation > crash
o C/C++ > IR/MIR

Targeting bug-prone parts of compiler
o Calling convention
o Stack layout
o New architectures/features

Differential testing
o Avoid re-implementing expected compiler behaviour



© 2024 Arm

Random code generators



5 © 2024 Arm

Csmith, yarpgen

Open source tools to generate random C programs

Generated programs:
• Guaranteed free of UB
• Not guaranteed to terminate (but most seeds will)
• Prints CRC of global variables at end
• Value of CRC not known by generators

Csmith: more complex code

Yarpgen: more structured loops



6 © 2024 Arm

Csmith/yarpgen test flow



7 © 2024 Arm

cctest (calling convention test)

Written by me, 2017-present

Random C/C++ program generator to test calling convention

Generates 2 source files and a header

Function calls between files, with random argument/return types

Assertions to test argument values

Features:
• Integer, float, pointer, complex types
• Enums, structs, unions
• Bitfields, including zero-size and over-size
• Neon, MVE and SVE vectors
• Packed/aligned attributes
• Variadic functions
• C++ exceptions, longjmp
• Variable-size and over-aligned stack objects
• CMSE security state transitions
• Tail calls, indirect calls



8 © 2024 Arm

cctest test flow



© 2024 Arm

Running compiler fuzzers



10 © 2024 Arm

Picking options to test
Compiler

Architecture

FPU

Endianness

ISA

ABI

LTO

Optimisation level

Unaligned access

PAC

BTI

MTE

UBSan

CFI

Stack protector

Auto var initialisation

Used register zeroing

Fast-math

Position-independent code

Debug info

Frame pointer

Execute-only

Straight-line speculation

Speculative load hardening

Shadow call stack

Code model

Want to test as many combinations as possible

Some combinations are invalid

Different levels of compatibility:
• Same implementation-defined behaviour
• Can be linked together



11 © 2024 Arm

Reducing and reporting failures

Compiler/linker crashes:
• Easy case, reduce with creduce, raise ticket

Csmith miscompilations
• Creduce will reduce to UB is not careful
• Script checks with sanitisers, valgrind, static analysis
• Works ~90% of the time
• Otherwise, must reduce manually
• Decide which compiler is buggy

Cctest miscompilations
• Architecture-specific code (e.g. vector intrinsics) makes using creduce hard
• Assertions give line number
• Manually reduce by deleting calls
• Decide which compiler is buggy



12 © 2024 Arm

Expected failures

Different xfail strategy needed to normal test suites

Compiler/linker crashes:
• Match strings in stderr

Miscompilations:
• Do not run affected compiler options (or combination)
• Do not generate affected code
• Match runtime error message
• Match pattern in generated code



Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante

Merci
감사합니다

धन्यवाद
Kiitos
شكرًا

ধন্যবাদ
תודה

ధన్యవాదములు
© 2024 Arm


	Slide 1: Practical fuzzing for C/C++ compilers 
	Slide 2: Overview
	Slide 3: What do I mean by "practical"? 
	Slide 4: Random code generators
	Slide 5: Csmith, yarpgen
	Slide 6: Csmith/yarpgen test flow
	Slide 7: cctest (calling convention test)
	Slide 8: cctest test flow
	Slide 9: Running compiler fuzzers
	Slide 10: Picking options to test
	Slide 11: Reducing and reporting failures
	Slide 12: Expected failures
	Slide 13

