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Overview

Random code generators
• csmith, yarpgen
• cctest

Running fuzzers
• Compiler option selection
• Reducing & reporting bugs
• Dealing with expected failures
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What do I mean by "practical"?

Aiming to find high-priority bugs
o Miscompilation > crash
o C/C++ > IR/MIR

Targeting bug-prone parts of compiler
o Calling convention
o Stack layout
o New architectures/features

Differential testing
o Avoid re-implementing expected compiler behaviour
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Random code generators
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Csmith, yarpgen

Open source tools to generate random C programs

Generated programs:
• Guaranteed free of UB
• Not guaranteed to terminate (but most seeds will)
• Prints CRC of global variables at end
• Value of CRC not known by generators

Csmith: more complex code

Yarpgen: more structured loops
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Csmith/yarpgen test flow
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cctest (calling convention test)

Written by me, 2017-present

Random C/C++ program generator to test calling convention

Generates 2 source files and a header

Function calls between files, with random argument/return types

Assertions to test argument values

Features:
• Integer, float, pointer, complex types
• Enums, structs, unions
• Bitfields, including zero-size and over-size
• Neon, MVE and SVE vectors
• Packed/aligned attributes
• Variadic functions
• C++ exceptions, longjmp
• Variable-size and over-aligned stack objects
• CMSE security state transitions
• Tail calls, indirect calls
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cctest test flow
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Running compiler fuzzers
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Picking options to test
Compiler

Architecture

FPU

Endianness

ISA

ABI

LTO

Optimisation level

Unaligned access

PAC

BTI

MTE

UBSan

CFI

Stack protector

Auto var initialisation

Used register zeroing

Fast-math

Position-independent code

Debug info

Frame pointer

Execute-only

Straight-line speculation

Speculative load hardening

Shadow call stack

Code model

Want to test as many combinations as possible

Some combinations are invalid

Different levels of compatibility:
• Same implementation-defined behaviour
• Can be linked together
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Reducing and reporting failures

Compiler/linker crashes:
• Easy case, reduce with creduce, raise ticket

Csmith miscompilations
• Creduce will reduce to UB is not careful
• Script checks with sanitisers, valgrind, static analysis
• Works ~90% of the time
• Otherwise, must reduce manually
• Decide which compiler is buggy

Cctest miscompilations
• Architecture-specific code (e.g. vector intrinsics) makes using creduce hard
• Assertions give line number
• Manually reduce by deleting calls
• Decide which compiler is buggy
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Expected failures

Different xfail strategy needed to normal test suites

Compiler/linker crashes:
• Match strings in stderr

Miscompilations:
• Do not run affected compiler options (or combination)
• Do not generate affected code
• Match runtime error message
• Match pattern in generated code
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