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WHY STATIC LEARNED COST MODELS?

» Benchmarking is expensive, noisy, and can require restricted hardware
features (eg perf counters).

» Deterministic performance results can make training ML models easier.
» When appropriate benchmarking tooling is available, bringing up new
architectures is trivial. This is not the case for analytical cost models which
require a significant amount of reverse engineering.



DATASET CONSTRUCTION

» We construct a dataset of about 1.5B X86 basic blocks using ComPile.
» We use the BBAddrMap tooling to extract individual basic blocks.
» We postprocess the extracted blocks to remove call, return, branch, and
syscall instructions.

» For initial results, we filter instructions that may load or store to simplify
validation of the benchmarking infrastructure.



DATASET CONSTRUCTION
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BENCHMARKING

» We need ground truth values to build a learned cost model.
» We collect inverse throughput values using llvm-exegesis.
» We use some custom python scripts to parallelize the collection. Results
aren’t exactly deterministic (most likely due to variance in ioctl syscalls), but
can be within about 0.2% run-to-run variance depending on the system.



BENCHMARKING

» Benchmark data does not need to be perfectly accurate for training!
Configuration Run-to-run Variability

1 benchmark + no HT ∼ 0.1%
1 benchmark/core + no HT ∼ 0.5%
1 benchmark/thread + no HT ∼ 0.6%

1 benchmark ∼ 0.8%
1 benchmark/core ∼ 1.2%
1 benchmark/thread ∼ 5%



DEALING WITH MEMORY ACCESSES

» Basic blocks that load or store to memory will segfault if the memory isn’t
mapped into the virtual address space.

» We currently use an iterative technique where we map at the address of a
segmentation fault iteratively until we no longer segfault or hit an upper limit
on the number of mapped pages.

» This is done using the memory annotations feature in llvm-exegesis.



DEALING WITH MEMORY ACCESSES

Before annotating:

movq $8192, %rax
movq (%rax), %rdi

After annotating:

# LLVM-EXEGESIS-MEM-DEF mem1 4096 7fffffff
# LLVM-EXEGESIS-MEM-MAP mem1 8192
movq $8192, %rax
movq (%rax), %rdi



DATASET SIZE

» Our raw deduplicated dataset is about 1.5B basic blocks.
» The dataset after processing is about 1B basic blocks.
» The dataset post-processing along with removing instructions that access
memory produces about 150M basic blocks.

» This is a significant improvement over previous open datasets (about 300K
BBs) and closed datasets (about 1.5M BBs).



MODEL ARCHITECTURE

» We build off the pre-existing GRANITE architecture with some slight
differences in the training.

» We use a cosine learning rate schedule and use similar hyperparameters to
those presented in the original paper.

» Previous experiments showed significantly improved performance going from
smaller datasets (about 300K BBs) to larger datasets (about 1.5M BBs). We
take this to the extreme.



INITIAL RESULTS

BB Count MAPE
1M 14.3%
2.5M 5.5%
10M 5.8%
10M1 4.7%

» These results are for znver2.
» Previous results showed MAPEs on the order of 6-8% for larger datasets (̃1M
BBs) and 8-10% for smaller datasets (3̃00k BBs).

1With adjusted hyperparameters



WORK TO BE DONE

» Training on the full dataset.
» Validation and training on datasets including memory-accessing instructions.
» Hyperparameter tuning.



FUTURE DIRECTIONS

» Fine-tuning of these models with additional context, such as cache misses.
(See Viraj Shah’s presentation).

» Beyond basic-block level cost modelling using similarly large datasets,
potentially taking advantage of input generation.

» Training MLRegalloc models using this new cost modelling technique and
evaluating performance.

» Mutuation-based fuzzing to make the model invariant against changes such
as register permutations.



ADVANTAGES OVER PREVIOUS APPROACHES

» The tooling is productionized. The vast majority of the benchmarking tooling
is available in upstream LLVM, is decently tested, and reasonably reliable at
this point.

» Better model performance for future work, much more comparable to the
most accurate static cost models.
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QUESTIONS?

Answers! (Hopefully)


