
Sign Extension Optimizations inside LLVM

Panagiotis Karouzakis, Polyvios Pratikakis

University Of Crete, ICS-FORTH

11/4/2024

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 1 / 15

Extension Operations

Sign extend the low 4 bits into a 8 bit value.

v3 v2 v1 v0

v3 v3 v3 v3 v3 v2 v1 v0

Zero extend the low 4 bits into a 8 bit value.

v3 v2 v1 v0

0 0 0 0 v3 v2 v1 v0

Truncate the 8 bit value into a 4 bit value. The
high bits are lost.

v7 v6 v5 v4 v3 v2 v1 v0

v3 v2 v1 v0
Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 2 / 15

The Problem

Figure 1: X86 DAG code after the last DAG combine

We could drop the truncate and the any extend and do a i32 addition.
The truncate does not generate any code in X86 but the any extend to
i32 does.

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 3 / 15

The Problem

In C/C++ code the type int may create many redundant sign
extensions.

Sign extension optimizations may need further research especially
for RISC-V

On X86 redundant truncations followed by any extend are
observed on SPEC 2017 benchmarks in many blocks.

LLVM still doesn’t query for all the legal widths that a operator
has for a given target. It does that on a subset of the available
operators.

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 4 / 15

Previous work

Kevin Redwine and Norman Ramsey[CC 2004] proposed the
filltypes.

They created type rules that used the filltypes to find the optimal
solution.

They used Dynamic Programming to find a solution.

Their implementation was on the small Language C−− a subset of
C.

They visited each AST node to apply all the type rules.

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 5 / 15

Filltypes

We use the notion of filltype proposed by Kevin Redwine et al[CC
2004]

A filltype indicates what an operand produces and accepts in their
upper bits.

Upper bits are the rest of the bits that do not have any data.

An operand has a fill type only if it is widenable, i.e., if applying
the operator to wide values can simulate the operator applied to
narrow values.

For example, since xor has a filltype, xori32 can be implemented as
xori64 regardless of the high bits of the operands.

(1010)⊕ (0011) = 1001

(11111010)⊕ (11110011) = 00001001

4 bit xor implemented using 8 bit xor

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 6 / 15

Filltypes

We use symbols s, z, g to match sign, zero, and garbage upper bits
respectively.

The input operands must be typed before visiting an instruction
and they can be an instruction as well.

and :: g × g −→ g
and :: z × g −→ z
and :: g × z −→ z
and :: s× s −→ s

sign bit
↓

sign bits b...b b . . .

zero bits 0...0

garbage bits ?...?

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 7 / 15

Legal Operations

Create multiple solutions per Instruction that are legal for the
target with different Instruction width.

Use data flow information to learn how many bits are data.

If we have upper bits left and not all of them are data we have a
filltype.

If not we can insert an extension to add a filltype based on the
target

If we insert a truncation we can potentially remove a filltype.

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 8 / 15

Binary operators

For binary operators search for legal filltype rules.

xor :: s× s −→ s
xor :: z × z −→ z
xor :: g × g −→ g
...

Ask Target Lowering for the legal Instructions widths.

For example, many targets offer xor with 32 bits and 64 bits.

xor :: 32× 32 −→ 32
xor :: 64× 64 −→ 64

If we have found an operation with legal Instruction width that
has a fillType, we can create a solution that keeps the new width,
the data bits and other information.

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 9 / 15

Our approach

Doing this optimization inside LLVM IR to add support for every
Language Frontend.

As a consequence we solve a flow sensitive problem to deal with
the control flow, instead of a flow insensitive problem.

We extend the proposed operand filltypes to match the LLVM
operands.

We have to deal with LLVM Intrinsics i.e., to choose among
Intrinsics of different widths.

While we use the available target operations, X86 needs special
handling because some extensions and truncations are free.

When we have more than 1 Use of an Instruction we might get
conflicting solutions.

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 10 / 15

Multiple Users Example

Solutions

Instruction

X

✓

✓

✓

User1 User2

..

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 11 / 15

PHIs example

..

phi

sub add

xorsext

sub

div

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 12 / 15

Implementation details

Iterate all the
Integer
Instructions

Solve Instruction

Dataflow
Fixpoint

Finish Solving
Instructions

Search best
Solution using
DP

Apply the best
Solution

Yes

No

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 13 / 15

Limitations and Next Steps

If an operator overflows it requires special consideration.

Checking for overflows is not one hundred percent accurate, so we
lose optimization opportunities.

Currently the project is implemented as a Function Pass. It may
be useful to use Module pass to better infer function parameters.

Using preferred X86 register width.

Choosing between Intrinsics of different widths.

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 14 / 15

Thank You!

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024 15 / 15

	The Problem
	Filltypes

	Our Approach
	Our approach
	Multiple Users Example
	PHIs example

	Limitations

