Sign Extension Optimizations inside LLVM

Panagiotis Karouzakis, Polyvios Pratikakis

University Of Crete, ICS-FORTH

11/4/2024

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

Extension Operations

Sign extend the low 4 bits into a 8 bit value.

v3 | V2 | V1 | Vo

V3 | 3 | V3 | 3 | V3 | V2 | U1 Vo

Zero extend the low 4 bits into a 8 bit value.

V3 | V2 | U1 Vo

Truncate the 8 bit value into a 4 bit value. The
high bits are lost.

V7 | Vg | U5 | V4 | U3 | V2 | U1 Vo

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

The Problem

(o]

Constant<64

truncate s z XB6ISD-:CMP
t34 : t58
i8

— 0 1

i8

i32

01
add
t40

i8
0
any_extend

t6l
i32

01|23
X861SD::CMOV
t62
i32

Figure 1: X86 DAG code after the last DAG combine

We could drop the truncate and the any_extend and do a i32 addition.

The truncate does not generate any code in X86 but the any_extend to
i32 does.

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

The Problem

@ In C/C++ code the type int may create many redundant sign
extensions.

@ Sign extension optimizations may need further research especially
for RISC-V

@ On X86 redundant truncations followed by any_extend are
observed on SPEC 2017 benchmarks in many blocks.

e LLVM still doesn’t query for all the legal widths that a operator
has for a given target. It does that on a subset of the available
operators.

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

Previous work

e Kevin Redwine and Norman Ramsey[CC 2004] proposed the
filltypes.

@ They created type rules that used the filltypes to find the optimal
solution.

@ They used Dynamic Programming to find a solution.

@ Their implementation was on the small Language C—— a subset of

C.
@ They visited each AST node to apply all the type rules.

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

@ We use the notion of filltype proposed by Kevin Redwine et al[CC
2004 |

e A filltype indicates what an operand produces and accepts in their
upper bits.
e Upper bits are the rest of the bits that do not have any data.

@ An operand has a fill type only if it is widenable, i.e., if applying
the operator to wide values can simulate the operator applied to
narrow values.

e For example, since xor has a filltype, xori3o can be implemented as
xorjgy4 regardless of the high bits of the operands.

(1010) & (0011) = 1001
(11111010) & (11110011) = 00001001

4 bit xor implemented using 8 bit xor

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

@ We use symbols s, z, g to match sign, zero, and garbage upper bits
respectively.

@ The input operands must be typed before visiting an instruction
and they can be an instruction as well.

and :: g X g— g
and :: 2 X g — 2
and :: g X z — 2
and :: S X § — S

sign bit
1
sign bits | b...b | b

zero bits

garbage bits | 7...7

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

Legal Operations

@ Create multiple solutions per Instruction that are legal for the
target with different Instruction width.

e Use data flow information to learn how many bits are data.

e If we have upper bits left and not all of them are data we have a

filltype.

e If not we can insert an extension to add a filltype based on the
target

e If we insert a truncation we can potentially remove a filltype.

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

Binary operators

e For binary operators search for legal filltype rules.

@ TOriSXS—S
@ TOT I ZXZ—Z
@ TOrigXxXg—g
o .

e Ask Target Lowering for the legal Instructions widths.

e For example, many targets offer xor with 32 bits and 64 bits.

o xor :: 32 x 32— 32
e xor ::64 x 64 — 64

e If we have found an operation with legal Instruction width that
has a fillType, we can create a solution that keeps the new width,
the data bits and other information.

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

Our approach

@ Doing this optimization inside LLVM IR to add support for every
Language Frontend.

@ As a consequence we solve a flow sensitive problem to deal with
the control flow, instead of a flow insensitive problem.

e We extend the proposed operand filltypes to match the LLVM
operands.

@ We have to deal with LLVM Intrinsics i.e., to choose among
Intrinsics of different widths.

e While we use the available target operations, X86 needs special
handling because some extensions and truncations are free.

@ When we have more than 1 Use of an Instruction we might get
conflicting solutions.

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

Multiple Users Example

Solutions

Instruction

SR

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

PHIs example

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

Implementation details

Iterate all the Finish Solving
Integer :
. Instructions
Instructions =
— Solve Instruction Search best
Solution using
No DP
Dataflow
Fixpoint Yes

Apply the best
Solution

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

Limitations and Next Steps

e If an operator overflows it requires special consideration.

e Checking for overflows is not one hundred percent accurate, so we
lose optimization opportunities.

e Currently the project is implemented as a Function Pass. It may
be useful to use Module pass to better infer function parameters.

e Using preferred X86 register width.

@ Choosing between Intrinsics of different widths.

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

Thank You!

Karouzakis et al. (UOC, FORTH) LLVM Sign Extensions 11/4/2024

	The Problem
	Filltypes

	Our Approach
	Our approach
	Multiple Users Example
	PHIs example

	Limitations

