
Better Performance
Models for MLGO Training
EuroLLVM ‘24

Presented by Viraj Shah; working with Ondřej Sýkora, Mircea Trofin, and Aiden Grossman

Background

2

Why do we need these cost models?
● Benchmarking is noisy, many runs needed to compensate.
● Benchmarking is also expensive.
● Care needs to be taken to obtain consistent results.

● Better, more accurate cost modeling 🠒 improved reward
signal quality 🠒 more capable MLGO models.

3

What are we using now?
● A weighted sum of six code features (e.g. loads and stores).
● Works fairly well for RegAlloc.
● Generally inaccurate.

● State-of-the-art static analysis based and learnt models are
also available.

● Generally decently accurate.

4

What is missing from what we have now?
● All of these assume ideal execution environments.
● Non-ideal runtime events like cache misses and branch

mispredictions affect results by an order of magnitude.

● Non-ideal behavior is very hard to model statically.

5

The Goal

6

● We need a more dynamic cost model.
● Can use profiling information to give the cost model hints.

● We can achieve this by:
○ Build a data collection pipeline that covers additional runtime

information.
○ Modifying learnt cost models so that they can consume this data.
○ Modifying the training and inference processes accordingly.

What do we want?

7

Metrics
● Standard ML accuracy metrics like MAPE.
● Ordering of blocks by performance.

8

Methodology

9

Collecting Runtime Information
● Modern CPUs have Performance Monitoring Units.
● PMU events cover all kinds of runtime phenomena.

● For example, Intel Skylake has1:
○ MEM_LOAD_RETIRED.L3_MISS
○ MEM_TRANS_RETIRED.LOAD_LATENCY_GT_128
○ BR_MISP_EXEC.ALL_BRANCHES

10

1 https://perfmon-events.intel.com/

A Simple Approach

11

● Collect cache miss counts.
● Use a simple linear model to find the overhead resulting from

misses.
● Essentially multiplying by cost per cache miss.

A Simple Approach
Benchmark memory access patterns like:
...

FlushLinkedListFromCache(head); // “Cold” accesses

Node *current = head;

int sum = 0;

while (current) {

 sum += current->value;

 current = current->next; // Pointer chasing

}

12

A Simple Approach
● This is not good enough.

● The “cost per cache miss” varies.
● Reasonably accurate when the exact type of access is

known.
● Good for the individual “categories”, does not generalize.
● Some categories are not particularly well defined.

13

A Better Approach
● Models need both static context and runtime information.

● “Base” learnt basic block cost models:
○ Recurrent, like the LSTM-based Ithemal1,
○ GNN-based, like GRANITE2.

14

1 Mendis et al, “Ithemal”, 2 Sýkora et al, “GRANITE”

A Better Approach
● Use this extra information to calculate

node embeddings.
● Simply concatenate

instruction-representing nodes
embeddings with runtime information
vector.

15

+

em
be

dd
in

g
ve

ct
or

Challenges
● Building a large enough dataset with representative cache

miss information is a huge task.
● The data collection pipeline isn’t suited for building datasets

of this scale.

● Possible solution: fine-tuning with runtime information.

16

Future Directions
● Expand to other runtime behaviors.

● Use basic block predecessor frequencies/execution traces
and supply them to the models as well.

17

Questions?
Also, feel free to contact me:

● shahvirajbiren@gmail.com
● https://www.linkedin.com/in/viraj-b-shah/
● https://github.com/virajbshah/

18

mailto:shahvirajbiren@gmail.com
https://www.linkedin.com/in/viraj-b-shah/
https://github.com/virajbshah/

