
INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

LLVM-IR-Dataset-Utils - Scalable Tooling for
IR Datasets

Aiden Grossman
University of California, Davis

Work performed while at LLNL

April 28, 2024

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

OUTLINE

INTRODUCTION

COMPILE

IR EXTRACTION

SCALING

ANALYSIS

LICENSING

CONCLUSION

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

COLLABORATORS

LUDGER PAEHLER KONSTANTINOS PARASYRIS TAL BEN-NUN JACOB HEGNA

WILLIAM MOSES JOSE MONSALVE-DIAZ MIRCEA TROFIN JOHANNES DOERFERT

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

INTRODUCTION

1. What problem are we actually trying to solve?
1.1 As ML models become bigger, more data is needed to train

them.
1.2 Many compiler analyses are bespoke and not evaluated

against multiple languages.
1.3 Other efforts, like translation validation, can also benefit

from more data.

2. We believe that having scalable tooling for creating and
analyzing large IR datasets helps solve these problems.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

WHAT IS COMPILE?

1. ComPile is a ready made IR dataset made using this
tooling.

2. Contains only appropriately licensed projects.
3. Approximately 600GB of Bitcode (2.8TB of textual IR).
4. Available for download on HuggingFace

(https://huggingface.co/datasets/llvm-ml/ComPile).

https://huggingface.co/datasets/llvm-ml/ComPile

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

DATASET DISTRIBUTION

Programing Language Bitcode (GB) Textual IR (GB)
C 2 10

C++ 29 103
Julia 164 1088
Rust 400 1524
Swift 7 36

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

GENERAL PROCESS

1. Run the normal build process with additional flags to
emit/embed bitcode.
1.1 Pass flags to extract bitcode as early as possible after the

frontend.

2. Extract the bitcode into a corpus.
3. Collect multiple corpora into a large dataset.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

IR EXTRACTION TOOLING - MLGO-UTILS

1. Upstreamed in the monorepo llvm/utils/mlgo-utils
2. Extracts IR in a variety of circumstances:

2.1 Structured compilation database (eg
compile commands.json) with embedded bitcode.

2.2 ”Loose” Bitcode files in the build directory.
2.3 Several other cases not used here (eg ThinLTO).

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

EXTRACTING C/C++ IR

1. Build with clang.
2. Pass the flag -Xclang -fembed-bitcode=all to

enable bitcode embedding.
3. Extract the IR from the object files in the build directory.

3.1 When possible, we use compile commands.json.
3.2 Otherwise, mlgo-utils finds all object files in the build

directoy.

4. We also extract compilation command lines and include
them in the corpus.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

EXTRACTING JULIA IR

1. Julia’s compilation model is very different from a standard
AOT compiler.
1.1 Code is JITed as needed and the exact types aren’t known

until runtime.

2. Precompiling packages with common types has become
common with PrecompileTools.jl

3. We use a custom patch to make Julia emit unoptimized
bitcode, using the precompilation tooling and running unit
tests to force the lowering of functions.

4. The IR from Julia has some caveats:
4.1 The IR has not been legalized at this point.
4.2 Running IPO passes creates correctness issues.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

EXTRACTING RUST IR

1. For building Rust code, we use cargo an build individual
targets with --emit=llvm-bc -C
no-prepopulate-passes in debug mode.

2. After building multiple targets, we copy the bitcode files
over into a corpus using mlgo-utils.

3. We pass no-prepopulate-passes to help ensure that
we are getting bitcode before any passes are run over the
LLVM-IR.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

EXTRACTING SWIFT IR

1. We use the standard swift compiler (on Linux) and pass
the following command line flags:
1.1 -c release to build in release mode.
1.2 -Xswiftc -embed-bitcode to enable bitcode

embedding.
1.3 --emit-swift-module-separately as it is required to

embed bitcode.
1.4 -Xswiftc -Onone to prevent any premature

optimizations.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

WHAT IS A BUILDER?

With llvm-ir-dataset-utils, we have the concept of a
builder that is responsible for a couple things:

1. Installing dependencies required to build a package when
necessary.

2. Building as many targets in the package as possible with
the appropriate flags.

3. Extracting the resulting bitcode into a corpus in a specified
directory.

4. Logging build information for possible later analysis.
Each builder is specific to a package ecosystem or build system
rather than a language.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

GENERAL SCALING PRINCIPLES

1. We use ray to distribute build jobs across a single node
and across multiple nodes when available.

2. The tooling is designed to split work across multiple nodes
as the cost of building this many packages is quite high.

3. We handle failures gracefully, but log all of them. There are
a lot of different failure cases.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

SCALING C/C++

1. We use the open-source HPC package manager Spack as
our source. This gives us 5000 C/C++ packages.

2. Many packages fail to build mostly due to clang/gcc
compatibility issues, but almost all core dependencies
build.

3. We’re interested in expanding to other sources of vetted
C/C++ in the future.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

SCALING RUST

1. We have a builder for arbitrary cargo packages.
2. For building ComPile, we run this over the entirety of

crates.io.
3. We observe many individual targets failing at this level for

various reasons, but still collect a large number of targets.

crates.io

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

SCALING JULIA

1. We have a builder for arbitrary Julia packages.
2. For building ComPile, we run this over the entirety of

https://juliahub.com/ui/Packages.
3. Building Julia packages takes a large amount of time,

mostly due to the need to run unit tests to force lowering
of functions.

https://juliahub.com/ui/Packages

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

SCALING SWIFT

1. We use SwiftPM as a package manager/build system and
can build arbitrary swift packages.

2. For building ComPile, we run this over the entirety of
https://swiftpackageindex.com/.

3. We run into a large number of build failures on Linux due
to dependency availability issues, like SwiftUI.

https://swiftpackageindex.com/

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

BESPOKE BUILDERS

1. We have bespoke builders for specific projects, supporting
the following build systems:
1.1 CMake
1.2 Autotools
1.3 Arbitrary shell commands

2. Useful for including large single projects in large datasets
or including internal code.

3. Individual projects are specified using JSON.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

ANALYSIS TOOLING

1. Designed to scale to large clusters.
2. Works on dataset built from source, HF version is future

work.
3. Can do a variety of different function and module-specific

analyses.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

EXAMPLE ANALYSES

1. Pass mutation frequency by language.
2. Opcode distribution by language.
3. Function property distribution by language.
4. Function duplication within and between languages.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

EXAMPLE ANALYSES - FUNCTION PROPERTIES

0 50k 100k 150k

1

10

10
2

10
3

10
4

10
5

10
6

2.5k
7.5k

12.5k

17.5k

22.5k

1

10

10
2

10
3

10
4

10
5

10
6

0 100 200 300 400

1

10

10
2

10
3

10
4

10
5

10
6

0 5k 10k 15k 20k

1

10

10
2

10
3

10
4

10
5

10
6

0 10k 20k 30k 40k

1

10

10
2

10
3

10
4

10
5

10
6

0 10k 20k 30k 40k

1

10

10
2

10
3

10
4

10
5

10
6

2
.5

k

7
.5

k

1
2

.5
k

1
7

.5
k

2
2

.5
k

2
7

.5
k

1

10

10
2

10
3

10
4

10
5

10
6

2
5

0

7
5

0

1
2

5
0

1
7

5
0

2
2

5
0

2
7

5
0

1

10

10
2

10
3

10
4

10
5

10
6

C

C++

Julia

Rust

Swift

Instructions Basic Blocks Top-level Loops Direct Calls

Load Instructions Store Instructions Integer Instructions Floating Point Instructions

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

EXAMPLE ANALYSES - FUNCTION DUPLICATION

0.531137 0.4577044 0.04132102 0.04532289 0.03455045

0.4577044 0.8826419 0.08701626 0.00800995 0.17399

0.04132102 0.08701626 0.3652232 0.001804736 0.01148874

0.04532289 0.00800995 0.001804736 0.9738435 0.04807733

0.03455045 0.17399 0.01148874 0.04807733 0.6168196

C C++ Rust Julia Swift

Swift

Julia

Rust

C++

C

0.2

0.4

0.6

0.8

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

LICENSE CONSIDERATIONS

1. License constraints are important for a variety of use cases:

1.1 Code in the distributed dataset needs to be licensed for that
purpose.

1.2 Different companies have different licensing constraints (eg
prohibition of AGPL).

2. To deal with license constraints, we have tooling for
filtering by license.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

DETERMINING LICENSES

1. Each corpus manifest that describes a specific package is
expected to have a license field.

2. All license files from the top level of the source directory
are copied over to the corpus.

3. A project is considered to be license compliant if it is
licensed under the set of allowed licenses and has a license
file matching that license ID.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

HOW CAN I RUN THIS?

1. Code is available in a PR:
https://github.com/llvm/llvm-project/pull/72320

2. More information on the dataset:
https://llvm-ml.github.io/ComPile/

3. Documentation:
https://llvm-ir-dataset-utils.vercel.app/

4. Incubator project RFC: https://discourse.llvm.org/t/
rfc-incubator-project-for-llvm-ir-dataset-utils/

74940 If you’re interested in using this or the dataset itself,
please express your interest on the RFC!

https://github.com/llvm/llvm-project/pull/72320
https://llvm-ml.github.io/ComPile/
https://llvm-ir-dataset-utils.vercel.app/
https://discourse.llvm.org/t/rfc-incubator-project-for-llvm-ir-dataset-utils/74940
https://discourse.llvm.org/t/rfc-incubator-project-for-llvm-ir-dataset-utils/74940
https://discourse.llvm.org/t/rfc-incubator-project-for-llvm-ir-dataset-utils/74940

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

FUTURE DIRECTIONS

1. Improve code quality!
1.1 Add better testing infrastructure.
1.2 Some refactoring/other misc code quality improvements to

help productionize it.

2. Add source code mappings. Prototype work for this has
already completed.

3. Add more sources, particularly C/C++ from linux distros.
4. Capturing of link-time dependencies.
5. Additional languages (eg Fortran).

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

WORK BUILDING ON/USING LARGE IR DATASETS

1. Compile time analyses
2. Cost modelling
3. ML for IR-related tasks (code size prediction)
4. Input generation to enable executing the code for

performance and runtime analyses.

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

ACKNOWLEDGEMENTS

We would like to thank Valentin Churavy for his assistance in
understanding the Julia compiler. Additionally, we would like
to thank Todd Gamblin, Alec Scott, Harmen Stoppels, and
Massimiliano Culpo for their assisstance with Spack. Finally,
we would like to thank Nikita Popov, Arthur Eubanks, and
other LLVM contributors who helped review patches that
made this work possible.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344
(LLNL-PRES-862525).

INTRODUCTION COMPILE IR EXTRACTION SCALING ANALYSIS LICENSING CONCLUSION

QUESTIONS?

Answers! (Hopefully)

	Introduction
	ComPile
	IR Extraction
	Scaling
	Analysis
	Licensing
	Conclusion

