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Data centers need PGO at scale

01 Motivation

Easy to operate 
at scale

Better 
performance

Instrumentation 
PGO (IR-PGO)

Sample-PGO 
(AutoFDO)

How to get the 

best of both? 
Zero profiling overhead Extra 2-3% performance

Up to 2x  training overhead

PGO delivers 10-20% CPU performance uplift, but there is tension…



Performance = f(Profile Quality, Optimization)

02 PGO Architectural Overview

Instrumentation 
Profile

Sampled
Profile

Optimizations

How to improve 

profile quality

BlockFrequenceInfo

BranchProbabilityInfo



Profile Quality
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Profile Correlation
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Pseudo Instrumentation



Pseudo-Instrumentation
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Comparison on 
HHVM

AutoFDO Pseudo Instrumentation Instrumentation PGO

Block overlap 88.2% 92.3% 100%

Profiling overhead 0% 0.04% 73.06%



Post-inline Profile Quality

04 Context-sensitive Sample PGO

Context-insensitive

Context-sensitive



Context-sensitive Sample Profiling
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Context-sensitive sampling:
• Synchronized: leaf frame of stack sample align with 

last branch in LBR (leverage PEBS)
• Sampled stack identifies context for LBR leaf
• Virtual unwind over calls/returns in LBR to adjust 

stack and recover context for all ranges in LBR

Traditional LBR sampling:
• To and From of adjacent branches form 

sampled range
• Raw LBR profiles converted into a set of 

sample address ranges

Profile for scalarAdd Profile for addVectorHead->scalarOp->scalarAdd
Profile for subVectorHead->scalarOp->scalarAdd



Context-sensitive Inlining

• Specialization based on context
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• Merge not-inlined context profile across modules 

• Top-down priority-based inliner in sample loader

• Global pre-inliner during profile generation, using binary 
function size as cost proxy



Context-sensitive Inlining
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Early replay 
Inliner

Early top-
down CS 

Inliner

Global pre-
inliner

AutoFDO CSSPGO

Goal

Solution

Preserve context 
profile from prior 
inlining

Inline decision 
driven by profile

CGSCC 
Inliner

CGSCC 
Inliner

Cold or size 
inlining

Context-
sensitive inline 
decision with 
specialization

Preserve 
context profile 
across module



CSSPGO: Putting things together
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Production usage at Meta (21 data center regions globally)

PGO Type Instr. PGO CSSPGO Other

CPU cycles % ~10% ~75% ~15%

HHVM AdRanker, AdRetriever, 
AdFinder, HaaS, …

• Pseudo Instrumentation: low overhead accurate profile correlation

CSSPGO• Context-sensitive sample profiling: better post-inline profile quality

• Context-sensitive PGO inliner and pre-inliner

More details: CGO 2024 paper & LLVM upstream

https://ieeexplore.ieee.org/document/10444807


Performance & code size
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Additional 1-5% performance on top of AutoFDO (60% Instr. PGO benefit) for Meta’s server workloads with smaller code size



Overhead
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while maintaining ~0% profiling overhead and transparent workflow
Additional 1-5% performance on top of AutoFDO (60% Instr. PGO benefit) for Meta’s server workloads with smaller code size



Conclusion & Next steps
• Recap

• Introduced CSSPGO that consists of pseudo-instrumentation and sampling context-sensitive profiling & inlining

• Demonstrated 1-5% perf on top of AutoFDO for Meta’s production data center workloads

• Aspirational challenges 

• If we derive dynamic instructions count from MBFI at the end, is it close to ground truth? 

• If replace all zero count blocks with int3 trap (assuming IR-PGO), will the program run? 

• If we turn off CGSCC inlining, will sample loader inliner or module inliner capture all beneficial inlining? 

• How do we get closer

• Tightening up profile maintenance (updating profile metadata for optimizations)

• Shifting more profile guided inlining from CGSCC to PGO friendly inliner

• Infrastructure / verifier to make sure profiles gets updated properly for optimizations



Questions?




