
Wenlei He Hongtao Yu Lei Wang

Revamping Sampling-Based PGO
with Context-Sensitivity and Pseudo-Instrumentation

Taewook Oh

1. Motivation

2. PGO architectural overview

3. Pseudo-instrumentation

4. Context-sensitive sample PGO

5. CSSPGO production results

Agenda

Data centers need PGO at scale

01 Motivation

Easy to operate
at scale

Better
performance

Instrumentation
PGO (IR-PGO)

Sample-PGO
(AutoFDO)

How to get the

best of both?
Zero profiling overhead Extra 2-3% performance

Up to 2x training overhead

PGO delivers 10-20% CPU performance uplift, but there is tension…

Performance = f(Profile Quality, Optimization)

02 PGO Architectural Overview

Instrumentation
Profile

Sampled
Profile

Optimizations

How to improve

profile quality

BlockFrequenceInfo

BranchProbabilityInfo

Profile Quality

02 PGO Architectural Overview

Profile Correlation

03 Pseudo Instrumentation

Pseudo Instrumentation

Pseudo-Instrumentation

03 Pseudo Instrumentation

Comparison on
HHVM

AutoFDO Pseudo Instrumentation Instrumentation PGO

Block overlap 88.2% 92.3% 100%

Profiling overhead 0% 0.04% 73.06%

Post-inline Profile Quality

04 Context-sensitive Sample PGO

Context-insensitive

Context-sensitive

Context-sensitive Sample Profiling

04 Context-sensitive Sample PGO

Context-sensitive sampling:
• Synchronized: leaf frame of stack sample align with

last branch in LBR (leverage PEBS)
• Sampled stack identifies context for LBR leaf
• Virtual unwind over calls/returns in LBR to adjust

stack and recover context for all ranges in LBR

Traditional LBR sampling:
• To and From of adjacent branches form

sampled range
• Raw LBR profiles converted into a set of

sample address ranges

Profile for scalarAdd Profile for addVectorHead->scalarOp->scalarAdd
Profile for subVectorHead->scalarOp->scalarAdd

Context-sensitive Inlining

• Specialization based on context

04 Context-sensitive Sample PGO

• Merge not-inlined context profile across modules

• Top-down priority-based inliner in sample loader

• Global pre-inliner during profile generation, using binary
function size as cost proxy

Context-sensitive Inlining

04 Context-sensitive Sample PGO

Early replay
Inliner

Early top-
down CS

Inliner

Global pre-
inliner

AutoFDO CSSPGO

Goal

Solution

Preserve context
profile from prior
inlining

Inline decision
driven by profile

CGSCC
Inliner

CGSCC
Inliner

Cold or size
inlining

Context-
sensitive inline
decision with
specialization

Preserve
context profile
across module

CSSPGO: Putting things together

05 Production Results

Production usage at Meta (21 data center regions globally)

PGO Type Instr. PGO CSSPGO Other

CPU cycles % ~10% ~75% ~15%

HHVM AdRanker, AdRetriever,
AdFinder, HaaS, …

• Pseudo Instrumentation: low overhead accurate profile correlation

CSSPGO• Context-sensitive sample profiling: better post-inline profile quality

• Context-sensitive PGO inliner and pre-inliner

More details: CGO 2024 paper & LLVM upstream

https://ieeexplore.ieee.org/document/10444807

Performance & code size

05 Production Results

Additional 1-5% performance on top of AutoFDO (60% Instr. PGO benefit) for Meta’s server workloads with smaller code size

Overhead

05 Production Results

while maintaining ~0% profiling overhead and transparent workflow
Additional 1-5% performance on top of AutoFDO (60% Instr. PGO benefit) for Meta’s server workloads with smaller code size

Conclusion & Next steps
• Recap

• Introduced CSSPGO that consists of pseudo-instrumentation and sampling context-sensitive profiling & inlining

• Demonstrated 1-5% perf on top of AutoFDO for Meta’s production data center workloads

• Aspirational challenges

• If we derive dynamic instructions count from MBFI at the end, is it close to ground truth?

• If replace all zero count blocks with int3 trap (assuming IR-PGO), will the program run?

• If we turn off CGSCC inlining, will sample loader inliner or module inliner capture all beneficial inlining?

• How do we get closer

• Tightening up profile maintenance (updating profile metadata for optimizations)

• Shifting more profile guided inlining from CGSCC to PGO friendly inliner

• Infrastructure / verifier to make sure profiles gets updated properly for optimizations

Questions?

