Revamping Sampling-Based PGO

with Context-Sensitivity and Pseudo-Instrumentation

Wenlei He Hongtao Yu Lei Wang Taewook Oh m
Meta



1. Motivation

2. PGO architectural overview
3. Pseudo-instrumentation
Agenda

4. Context-sensitive sample PGO

5. CSSPGO production results



01 Motivation

Data centers need PGO at scale

PGO delivers 10-20% CPU performance uplift, but there is tension...

Easy to operate

at scale

Sample-PGO
(AutoFDO)

Zero profiling overhead

Better
performance

Instrumentation
PGO (IR-PGO)

Extra 2-3% performance
Up to 2x training overhead



02 PGO Architectural Overview

Performance = f(Profile Quality, Optimization)

Optimizations

BlockFrequencelnfo

BranchProbabilitylnfo ’




02 PGO Architectural Overview

Profile Quality

5 S
§ % IR/Source Binary
'-g g (unoptimized)| —® Optimization | —» Inline —» | Optimization | —» | CodeGen —_— (optimized)
o \ \ / \ \\
= o o
2 Wssseescesesnessscminssn] A T
3 8 Profls IR/Source Binary -
o < e D Profile Profile - Profiling
: Profile Correlation :




03 Pseudo Instrumentation

Profile Correlation

Correlation
Anchor IR

Binary

AutoFDO

Pseudo Instrumentation

if.then:

call void @do_then()

br label %if.end
if.else:

call void @do_else()
if.end:

[src.c:6]
[src.c:6]

[src.c:8]

if.then:
call void @llvm.pseudoprobe(i64 2, ...)
call void @do_then() [src.c:6]
br label %if.end [src.c:6]
if.else:
call void @llvm.pseudoprobe(i64 3, ...)

call void @do_else() [src.c:8]
if.end:

Instr PGO

if.then:
call void @llvm.instrprof.increment(i32 O, ...)
call void @do_then() [src.c:6]
br label %if.end [src.c:6]
if.else:
call void @llvm.instrprof.increment(i32 1, ...)
call void @do_else() [src.c:8]
if.end:

[.text]

0x20: call <do_then>
0x25: jmp <foo+0x2f>
Ox2a: call <do_else>

[.debug_info]

0x20: src.c:6
0x25: src.c:6
Ox2a: src.c:8

[.text] [.pseudo probe]

0x20: call <do_then> 0x20: probe.2
0x25: jmp <foo+0x2f> Ox2a: probe.3
Ox2a: call <do else>

[.text]

0x20: inc qword ptr [rip + 0x206f99]
0x27: call <do_then>

0x2c: jimp <foo+0x3D>
0x32: inc qword ptr [rip + 0x206fa1]
0x39: call <do_else>




03 Pseudo Instrumentation

Pseudo-Instrumentation

llvm > llvm-project > llvm > include > llvm > IR > % Intrinsics.td > ...

// The pseudoprobe intrinsic works as a place holder to the block it probes.

// Like the sideeffect intrinsic defined above, this intrinsic is treated by the

// optimizer as having opaque side effects so that it won't be get rid of or moved

// out of the block it probes.

def int_pseudoprobe : DefaultAttrsIntrinsic<[], [1lvm_i64_ty, 1lvm_i64_ty, 1lvm_i32_ty, llvm_i64_ty],
| [IntrInaccessibleMemOnly, IntrWillReturn]>;

Block overlap 88.2% 92.3% 100%

Profiling overhead 0% 0.04% 73.06%




04 Context-sensitive Sample PGO

Post-inline Profile Quality

Elem AddVectorHead(Vector V1, Vector V2) {
return scalarOp(V1[@], V2[@], OpAdd);
¥
Elem subVectorHead(Vector V1, Vector V2) {
return scalarOp(V1([Q], V2[@], OpSub);
}
Elem scalarOp(Elem E1, Elem E2, Opcode Op) {
switch (0p) {
case OpAdd:
return scalarAdd(E1l, E2);
case OpSub:
return scalarSub(El, E2);
}

Pre-inline call counts

[addVectorHead] [subVectorHead}

600 300

Context-insensitive [ scalarOp ]

6<ﬁ/\‘300
( scalarAdd J [ scalarSub ]

Pre-inline call counts

[addVectorHeacﬂ [subVectorHead]

600 l l 300

Context-sensitive [ SO ] [ Oy ]

600 300
[ scalarAdd J [ scalarSub J

Post-inline call counts

/ addVectorHead \
600 o

Y
a scalarOp \

400 - ", 200

| . \

4 ' &% )

scalarAdd
scalarSub

/ subVectorHead \
300 4
4

4 scalarOp i)

200 - -, 100

i '\ f‘ i)

scalarAdd
scalarSub

=
{

=

o

N
f

N

(-

Post-inline call counts

/ addVectorHead \
600 _

A 4
f scalarOp )

600 - 0
r A

o 3

\

scalarAdd
scalarSub

ot =

S )

f subVectorHead \
300 ¢
\

4 sca_larOp )

-, 300

Dty
r A
v DU "

scalarAdd
scalarSub

/) .

- =)




04 Context-sensitive Sample PGO

Context-sensitive Sample Profiling

Traditional LBR sample LBR FROM ADDR16, LBR TO ADDR16 | .. | .. | LBR FROM ADDR1, LBR TO ADDRI
Synchronized stack sample STACK FRAME ADDR1 | STACK FRAME ADDR2 | .. | STACK FRAME ADDRn
for context-sensitivity ? ?
Leaf/callee frame Root/caller frame

Traditional LBR sampling: Context-sensitive sampling:

 To and From of adjacent branches form * Synchronized: leaf frame of stack sample align with
sampled range last branch in LBR (leverage PEBS)

 Raw LBR profiles converted into a set of « Sampled stack identifies context for LBR leaf
sample address ranges * Virtual unwind over calls/returns in LBR to adjust

stack and recover context for all ranges in LBR

Profile for addVectorHead->scalarOp->scalarAdd

Profile for scalarAdd .
Profile for subVectorHead->scalarOp->scalarAdd



04 Context-sensitive Sample PGO

Context-sensitive Inlining

. e . Bottom-up Inline Top-down Inline
- Specialization based on context
« Top-down priority-based inliner in sample loader [addvecwmmad] E’ddVGCtOfHeadJ [SubVectorHeadJ
scalarOp scalarOp scalarOp

[ scalarAdd ]{ scalarSub ] [ scalarAdd ] [ scalarSub J

- Merge not-inlined context profile across modules

. e . . . . . scalarOp
* Global pre-inliner during profile generation, using binary [‘“ddve"t“”ead] [suwecmr"'ead] [\ D]
function size as cost proxy

u




04 Context-sensitive Sample PGO

Context-sensitive Inlining

AutoFDO CSSPGO
Preserve context Inline decision Preserve Cont.e.xt—. . Cold or size
Goal profile from prior driven by profile context profile sensitive |rTI|ne inlining
inlining across module decision with

specialization

Solution




05 Production Results

CSSPGO: Putting things together

 Pseudo Instrumentation: low overhead accurate profile correlation
« Context-sensitive sample profiling: better post-inline profile quality

* Context-sensitive PGO inliner and pre-inliner

More details: CGO 2024 paper & LLVM upstream

Production usage at Meta (21 data center regions globally)

PGO Type

Instr. PGO

CSSPGO

Other

CPU cycles %

~10%

~75%

~15%

HHVM

AdRanker, AdRetriever,

AdFinder, HaaS,

lization (CGO) | 979-8-3503-9509-9/24/$31.00 ©2024 IEEE | DO 10.1109/CG057630.2024.10444807

CSSPGO

Revamping Sampling-Based PGO with
Context-Sensitivity and Pseudo-instrumentation

Wenlei He Hongtao Yu
Meta Inc. Meta Inc.
USA USA
wenlei @meta.com hoy @meta.com

Abstract—The ever increasing scale of modern data center
demands more effective optimizations, as even a small percentage
of can result in a reduction
in data-center cost and its environmental footprint. However, the
diverse set of workloads running in data centers also challenges

Lei Wang Taewook Oh
Meta Inc. Meta Inc.
USA USA
wlei@meta.com twoh@meta.com
for large-scale adoption. Sampling-based PGO, on

lhc other hand, has low entry barriers but it does not deliver
the same performance as instrumentation-based PGO.
Context-sensitive sampling-based PGO with pseudo-

the scalability of optimization solutions. Profile-guided optimi:
tion (PGO) is a promising technique to improve appllcallon
performance. Sampling-based PGO is widely used in data-center
applications due to its low operational overhead, but the perfor-
mance gains are not as as the instr

instr ion (CSSPGO) prop in this paper provides an
alternative solution with better performance than traditional
sampling-based PGO while maintaining low operational over-
head.

t. The high overhead of instr

based PGO, on the o(her hand, hinders its large-scale adoption,
despite its superior performance gains.

In lhis paper. we propose CSSPGO, a context-sensitive
GO k with pst

CSSPGO offers a more balanced solullon to push snmpllng-hased

PGO closer to instr d PGO while

minimal ‘head. pseudo-

inslrumtnlullan to impmve pmﬂlt quality wilhou( inmrring

inst: It enriches

pmﬁlt with conlen-sensulh'il) to ald more effective optimizations

through a novel profiling methodology using synchronized LBR

and stack sampling. CSSPGO is now used to optimize over 75%

A

Large data centers often run a diverse set of workloads. Given
that most of the workloads are compute-bound, optimizing
CPU performance with compiler optimizations and PGO
in particular has proven to be very effective. Within Meta,
there are thousands of different back-end services running
to serve its users. This requires optimizations to be service-
agnostic and have low-operational cost to be used across the
entire server fleet, and PGO is no exception. While the most
pcrform.ml variant of PGO is msu'umcnl.mon PGO, |l comes
with i adds

of Meta’s data center CPU cycles. Our with p
workloads 1%-5% p on
top of state-of-the-art sampling-based PGO.

Index Terms—Profile Guided Optimization, Feedback Directed
C S Context-sensitive Pro-

filing, Compiler

non-trivial run-time overhead, so profiling instrumented binary
requires special setup for each service, and the instrumented
binary usually cannot be run in production environment. Such
limitation significantly hinders its adoption.



https://ieeexplore.ieee.org/document/10444807

05 Production Results

Performance & code size

6 2
e 5 e 0 []
z 3
@) e -2
e 4 o
S 5
- < -4
<
g o -6
o c
g 2 g
S S -8
== ©
£ 4 I I I & 10
- )
L N
a 2 1
HHVM AdRanker AdRetriever AdFinder Haa$S HHVM AdRanker AdRetriever  AdFinder HaaS
Probe-only CSSPGO m Full CSSPGO M Instr PGO Probe-only CSSPGO ® Full CSSPGO

Additional 1-5% performance on top of AutoFDO (60% Instr. PGO benefit) for Meta’s server workloads with smaller code size



05 Production Results

Overhead

0.8 70%
)
% 06 60%
Y 04
c o 50%
o X
= 0.2 o
- —
= -- -- T
o 0 - n 40%
g - [ [] g
‘é -0.2 1 | | g 30%
= @
S 20%
Q .06
(a T

-0.8 10%

HHVM AdRanker AdRetriever  AdFinder HaaS HHVM AdRanker  AdRetriever  AdFinder Haa$S
B Pseudo-instrumentation Pseudo-instrumentation M Debug information

Additional 1-5% performance on top of AutoFDO (60% Instr. PGO benefit) for Meta’s server workloads with smaller code size
while maintaining ~0% profiling overhead and transparent workflow



Conclusion & Next steps

Recap

« Introduced CSSPGO that consists of pseudo-instrumentation and sampling context-sensitive profiling & inlining

- Demonstrated 1-5% perf on top of AutoFDO for Meta’s production data center workloads

Aspirational challenges
« If we derive dynamic instructions count from MBFI at the end, is it close to ground truth?
- If replace all zero count blocks with int3 trap (assuming IR-PGO), will the program run?

« If we turn off CGSCC inlining, will sample loader inliner or module inliner capture all beneficial inlining?

How do we get closer
- Tightening up profile maintenance (updating profile metadata for optimizations)
- Shifting more profile guided inlining from CGSCC to PGO friendly inliner

- Infrastructure / verifier to make sure profiles gets updated properly for optimizations



Questions?

N Meta






