
Contextual Instrumented-Based
Profiling for Datacenter

Applications

Mircea Trofin, Google

agenda

● translate the title
● contextual instrumentation implementation (main topic)
● results
● non-server example
● plans & speculations

what is “instrumented…” (aka iFDO)?

● 2 builds:
○ instrument certain edges, before IPO:

■ llvm.instrprof.* intrinsics
■ identify each edge with an index (0, 1, 2..)
■ lower to counter increments in a global, per-function buffer

○ run the program -> counter values form the profile
■ maybe run it with a bunch of different inputs & merge profiles

○ rebuild: profile ingested at same position in pass pipeline as
instrumentation

■ so that counter indices match
○ $ profit! $:)

● compiler-rt code for e.g. saving the globals to a file
for an in-depth dive: 2020 LLVM Developers’ Meeting: “PGO Instrumentation: Example of CallSite-Aware Profiling”, Pavel
Kosov, Sergey Yakushkin

datacenter applications (compiler view)
● init: set up internal architecture
● steady state, threads in a pool execute an

infinite loop:
○ pick up work from some queue
○ execute some synchronous task (typically short lived)

● a task is the analogue of “classical” main
○ just that the entry point is the RPC handler
○ the most direct impact of the optimizing compiler:

finish tasks fast

● we collect profiles via an RPC, too!

● we load profiles before IPO
● callee behavior can be dependent on use

○ but! profile has averages over all possible callers!
○ => profile quality degrades through inlining
○ poor profile => less profit :(

a measurable effect: can we estimate dynamic instruction count
changes if inline policy changes -> reward signal for MLGO training

see also the CSPGO talk earlier, for the sampling-based profiling
approach to this problem

a profiling problem

contextual profiles

● keep distinct counters for different call sites paths
○ btw, “paths” starting from where?

● challenge for instrumentation (stemming from current
technique):

○ we pre-allocate counters statically
○ we don’t know the call paths - how many counter versions to allocate?
○ (...various alternatives)

key insight

Rather than think of it as a “classical binary”

Why not think of it as a “package of tasks”
(distinct entry points & call graphs)

do we know the entry points (to the tasks)?

● yes (well, the binary owner would know)
● ..or, can detect from behavior in production

○ this is just about determining main entry point functions (~=main RPC
handlers)

○ unlikely to change too often
● they are coarse, architectural property of a binary (i.e.

fairly stable over time)

implementation

high level

● pass task entry points via an LLVM flag
● main LLVM change: how instrumentation intrinsics are

lowered
● new instrumentation intrinsic: llvm.instrprof.callsite

○ identifies by index a callsite in a function
○ precedes any call site that’s not inline asm or intrinsic

● lowering:
○ no global counter arrays
○ entry BB: call to __llvm_instrprof_{get|start}_context

■ returns a chunk of memory - the Context
○ counter update: Context.counters[counter_index] += <step>
○ llvm.instrprof.callsite :

■ save CS.getCalledValue() and &Context.callsites[callsite_index] in TLS

low(er) level Details

header NrCounters counters NrCallsites callsites

ContextNode

uint64_t* ContextNode**uint64_t Guid

ContextNode* Next

uint32_t NrCounters
uint32_t NrCallsites
—-------------------
8 + 8 + 4 + 4 = 24
bytes

NrCounters and NrCallsites are function-specific,
compile-time constants

passed to __llvm_instprof_{get|start}_context

IR, instrumented
define void @an_entrypoint(...) {
 call @llvm.instrprof.increment(<an_entrypoint_guid>, .., <nr_counters>, 0)
 …
 br i1 %smth label %a, label %b

a:
 call @llvm.instrprof.increment(<an_entrypoint_guid>, .., <nr_counters>, 5)
 ...
 call @llvm.instrprof.callsite(<an_entrypoint_guid>, .., <nr_callsites>, 2, %callee_1)
 call void %callee_1
 …
}

@define void @a_callee() {
 call @llvm.instrprof.increment(<a_callee_guid>, .., <nr_counters>, 0)

IR-ish (LLVM)
define void @an_entrypoint(...) {
 %ctx =
__llvm_instrprof_start_context(1234, ...)
 …
 br i1 %smth label %a, label %b

a:
 %ctx.counters[5] += 1
 ...
 _tls.expected_cs = %callee_1
 _tls.callsite_info = <gep, %ctx.callsites, 2>
 call void %callee_1
 …
}

@define void @a_callee() {
 %ctx = __llvm_instrprof_get_context(5678,
 @a_callee, nr_counters, nr_callsites)

void __llvm_instrprof_get_context(guid, callee,
 ctrs, csts) {
 if (callee != _tls.expected_cs) {...}

 ContextNode **insert_pt = _tls.callsite_info;
 ContextNode *p = *insert_pt

 while (p && p->guid != guid)
 p = p->Next
 if (p)
 return p;

 p = bump_allocate(ctrs, csts);
 p->next = *insert_pt;
 *insert_pt = p;
 return p;
}

C-ish (compiler-rt)

define void @entrypoint(...) {
 call @foo // entrypoint id: 2
}

@define void @foo() {
 call @bar // entrypoint id: 0
}

@define void @bar() {
 call @foo // entrypoint id: 5
}

entrypoint

foo

bar

0 1 2 3

0 1 2

0

foo
0 1 2

1 2 3 4 5

A function will have
a different context
depending on
position in call
graph

entry points are special

struct ContextRoot {

 ContextNode *FirstNode;

 Arena *FirstMemBlock;

 Arena *CurrentMem;

 __sanitizer::StaticSpinMutex Lock;

};

Set up and zero-initialized on LLVM side

Parameter to __llvm_instrprof_start_context

Lock.tryLock() failed? get a “ScratchContext” instead!

a

b

c

d

d

ContextRoot
(entrypoint) “a”

ScratchContext

● also what __llvm_instrprof_get_context returns if:
○ expected callee doesn’t match
○ there’s TLS data absent (== we’re outside any entry point)

● understood by compiler-rt:
○ if function uses ScratchContext, all callees will also use that
○ detectable because TLS will contain a ScratchContext interior pointer

(also what __llvm_instrpof_start_context returns if it can’t take the lock)

special consideration: signal handlers

● at any random point in execution, a signal handler may be
called

○ it will promptly call __llvm_instprof_get_context ! now what?
● it will discover:

○ either no call info on TLS (the handler in runtime “consumes” that
info); or

○ expected callee is not itself; or
○ the call info is pointing in ScratchContext

=> return ScratchContext

other special considerations

● recursion
○ not doing anything special - just chain recursive activations
○ “it’s OK” - RPCs should finish fast

● tail calls
○ currently doing nothing special
○ could get smart and keep a “bubble” of contexts

profile format

● 2 step:
○ raw: dump the Arenas (plus a small header)
○ post-process to LLVM Bitstream

results

setup

● search binary
○ not IO bound, low/no contention -> longer running RPCs
○ 2 workloads, “large” and “small”

● reusing current instrumented profiling collection tooling

● runtime mem overhead: 120+25 + N_THREADS * 1MB (<=ScratchContext
size)

● regular iFDO profile: 204MB (zipped: 65MB)
● final ctx profile: 46MB (zipped: 12MB)

profile characteristics

workload raw profile # ctx # counters # non-0
counters

max depth

large 120MB 1,118,987 9,376,222 3,201,863 89

small 25MB 279,725 2,082,311 774,796 62

binary size

section iFDO Contextual

.text 449MB 645MB

__llvm_prf_* 213MB (35MB are names,
so “critical” is 117MB)

-

Total 964MB 960MB

inherent .text overhead due to callsites.

profile collection performance

Metric iFDO contextual
improv.
multiplier

"TOTAL":QPS: 3,456.95 18,399.70 5.32
"SMALL":avg_cpu_kcycles: 49,112.96 10,699.07 4.59
"SMALL":99.9%ile_server_latency_usec: 1,152,165.00 166,625.00 6.91
"SMALL":avg_round_trip_latency_usec: 54,970.23 11,297.49 4.87
"LARGE":avg_cpu_kcycles: 91,293.63 13,937.04 6.55
"LARGE":99.9%ile_server_latency_usec: 634,050.00 75,521.00 8.40
"LARGE":avg_round_trip_latency_usec: 65,588.55 10,403.51 6.30

● (absence of) shared writes
○ anecdote: if the null context were shared => 20x slowdown compared to normal iFDO! (yes,

without any concurrency control)
● steady-state overhead is just around callsites

○ i.e. decaying occurrence of any (bump-)allocation

Distribution of nr of counters per ctx (y: log scale)

Distribution of nr of callsites per ctx (y: log scale)

Distribution of max indirect calls in a ctx (y: log scale)

Distribution of number of contexts by depth (linear)

a non-server use

opt

● collected the IR of PassBuilder.cpp (~8MB)
● opt --passes=’default<O2>’

metric iFDO Contextual

time 12.51s* 30.29s*

profile size 19MB 138MB

#counters 66M

#contexts 3.5M

runtime mem usage 868MB

*(for reference: ~9s non-instr)

Distribution of nr of counters per context (y: log scale)

Distribution of nr of callsites per ctx (y: log scale)

Distribution of max indirect calls in a ctx (y: log scale)

Distribution of nr of contexts by depth (linear)

some differences

● max counter values (relative to entry):
○ large: 4K
○ small: 16K
○ opt: 24M

● it’s why opt’s profile is relatively small
○ spends more time in loops

plans & speculations

profile ingestion (use)

● interplay with ThinLTO
● ThinLTO ingestion builds on existing “Workload

Definitions” (PR #74545)
○ ingest all of a graph into one module

● post-link opt leverages ModuleInliner:
○ do all IPO first, and then function simplification
○ ICP, Inliner awareness about ctx profiling
○ this can be relaxed, piecemeal, for passes in the function

simplification pipeline, as necessary

possible commonalities with CSPGO

● let’s first iterate a bit, risk of “too early
abstractions”

● Realistic goal (I think):
○ a common “ContextualProfileAnalysis ”
○ or at least an abstraction
○ goal is to make “contextual awareness” for a pass a

technique-independent change

in closing

● RFC -> after EuroLLVM
● “showcase” PR #86036
● the “task-based”, “pass the entry points” approach may be

more general
○ main isn’t what it used to be
○ lots of other programs are event-driven (browsers. phone apps.)
○ focus analysis, optimizations… (“optimizing, but to what end?”)

