

4/10/2024 @ European LLVM Developers' Meeting

Enabling HW-based PGO for both Windows and Linux

Wei Xiao (<u>wei3.xiao@intel.com</u>)

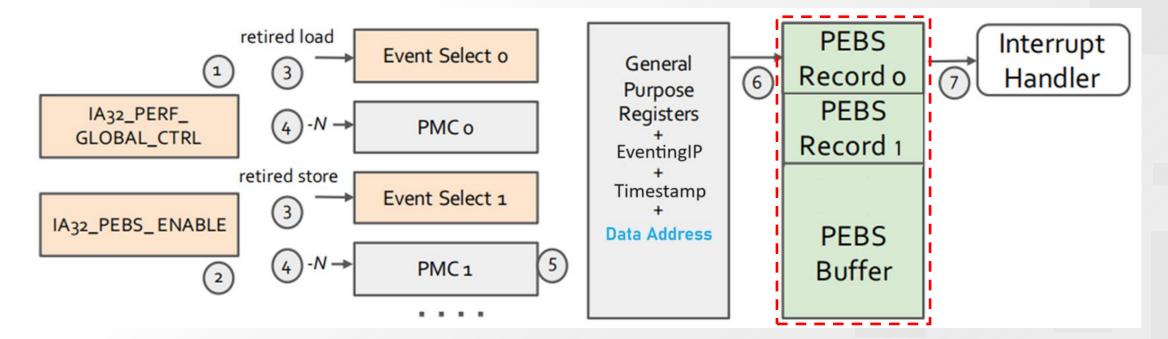
Contributors: Timothy Creech, Haohai Wen, Rakesh Krishnaiyer Mike Chynoweth, Ahmad Yasin, Tianqing Wang

Agenda

- 1. Motivation
- 2. New Feedback Capabilities
- 3. Windows Support
- 4. Demo
- 5. Challenges & Solutions
- 6. Upstreaming
- 7. Summary
- 8. Q&A

Motivation

- Sampled profiling periodically interrupts program execution to grab a HW event count or machine state. Most CPUs can do this purely in HW or can emulate it in SW (by using a timer).
- Modern CPUs support more advanced forms of HW profiling:


Intel x86_64	AMD x86_64	ARM	RISC-V	HW Profiling Capabilities
PEBS	IBS	SPE		Event-based Sampling
LBR	LbrExtV2	BRBE	CTR	Short trace of branches
PT		CoreSight		Full trace of executed instructions

These allow gathering samples in HW, possibly multiple at a time, with lower overhead and provide other benefits, such as reduced-skid, precise distribution and Data Address.

Intel PEBS Overview

Processor Event-Based Sampling (PEBS)

- Low-overhead sampling (an order of magnitude reduction)
- Reduced-skid or Precise-Distribution

Intel LBR Overview

Last Branch Record (LBR)

- CPU collects data for taken branches
 - Source Address –
- Low overhead

Recent CPUs offer Architectural LBRs

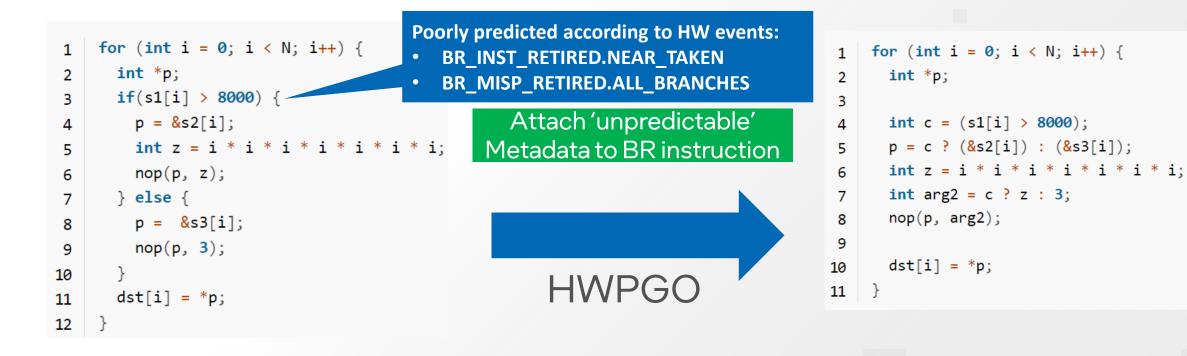
 Consistent across processor generations and in virtualized environments

Register Address (Hex)	Architectural MSR Name and bit fields	MSR/Bit Description
1500- 151FH	IA32_LBR_x_FROM_IP [63:0]	FROM_IP: The source IP of the recorded branch or event, in canonical form.
1600- 161FH	IA32_LBR_x_TO_IP [63:0]	TO_IP: The destination IP of the recorded branch or event, in canonical form.
1200- 121FH	IA32_LBR_x_INFO	Last Branch Record <u>entry</u> X info register (R/W). An attempt to read or write IA32_LBR_x_INFO such that x >= IA32_LBR_DEPTH.DEPTH will #GP.
	15:0	CYC_CNT: The elapsed CPU cycles (saturating) since the last LBR was recorded.
	55:16	Undefined, may be zero or non-zero. Writes of non-zero values do not <u>fault, but</u> reads may return a different value.
	59:56	BR_TYPE: The branch type recorded by this LBR. Encodings: 0000B: JCC 0001B: JMP Indirect 0010B: JMP Direct 0011B: CALL Indirect 0100B: CALL Direct 0101B: RET 011xB: Reserved 1xxxB: Other Branch
	60	CYC_CNT_VALID: CYC_CNT value is valid.
	61	TSX_ABORT: This LBR record is a TSX abort. On processors that do not support Intel [®] TSX (<u>CPUID.07H.FBX.HLF[</u> bit 4]=0 and CPUID.07H.EBX.RTM[bit 11]=0), this bit is undefined.
	62	IN_TSX: This LBR record records a branch that retired during a TSX transaction. On processors that do not support Intel [®] TSX (<u>CPUID.07H.EBX.HLE[</u> bit 4]=0 and CPUID.07H.EBX.RTM[bit 11]=0), this bit is undefined.
	63	MISPRED: The recorded branch direction (Jcc) or target (indirect branch) was mispredicted.

HWPGO Overview

HW-based PGO is an extension of existing Sampling-based PGO

- HWPGO is a kind of Sampling-based PGO for efficient profiling on optimized binaries in production environments.
- HWPGO enables new types of feedback capabilities provided by HW for new compiler optimizations. HW counters can track a wide range of events, including:
 - Instructions retired
 - Branch mispredictions
 - Cache misses
 - Memory accesses and Data Address
 - Floating-point operations
 - Architectural LBR Inserts (in next-gen CPUs)


Hardware can provide accurate frequency and profiles of other events:

BR_INST_RETIRED.NEAR_TAKEN:uppp: 4016b0 0x4016b0/0x40116d/P/-/-/8 0x401168/0x4016b0/P/-/-/9 1193/0x401160/P/-/-/6 0x4011b5/0x401170/P/-/-/1 0x4016b0/0x4011b5/P/-/-/1 0x4011b0/0x4016b0/P/-/-/5 b5/0x401170/P/-/-/1 0x4016b0/0x4011b5/P/-/-/1 0x4011b0/0x4016b0/P/-/-/6 0x4016b0/0x40116d/P/-/-/1 /0x4016b0/P/-/-/11 0x401193/0x401160/M/-/-/3 0x4011b5/0x401170/P/-/-/1 0x4016b0/0x4011b5/P/-/-/1 12 BR MISP RETIRED.ALL BRANCHES:upp: 401193 0x4016b0/0x40116d/P/-/-/7 0x401168/0x4016b0/P/-/-/ 01193/0x401160/M/-/-/3 0x4011b5/0x401170/P/-/-/1 0x4016b0/0x4011b5/P/-/-/1 0x4011b0/0x4016b0/P/-/-/5 1b5/0x401170/P/-/-/1 0x4016b0/0x4011b5/P/-/-/1 0x4011b0/0x4016b0/P/-/-/5 0x4011b5/0x401170/P/-/-/1 8/0x4016b0/P/-/-/14 0x401193/0x401160/M/-/-/3 0x4011b5/0x401170/P/-/-/1 0x4016b0/0x4011b5/P/-/-/1

7

Branch Mispredict Feedback Example

jmp .LBB0_1 .p2align 4, 0x90	Before HWPGO:	
.LBB0_3: movq %rsi, %rcx movl \$3, %edx callq nop		After HWPGO:
movq %rsi, %r13 .LBB0_4: movl (%r13), %eax movl %eax, (%r14,%r12,4) incq %r12 addq \$4, %rsi addq \$4, %r15 cmpq \$20000, %r12 je .LBB0_5	.LBB0_1 Opt. mispredicted conditional branch to conditional move	<pre>movl %r12d, %eax imull %r12d, %eax imull %r12d, %eax movl %eax, %edx imull %r12d, %edx imull %eax, %edx cmpl \$8001, (%rbx,%r15) movq %rsi, %r13</pre>
.LBB0_1: cmpl \$8001, (%rbx,%r12,4) jl .LBB0_3 # %bb.2: leaq (%rdi,%r12,4), %r13 movl %r12d, %eax imull %r12d, %eax imull %r12d, %eax imull %r12d, %edx imull %r12d, %edx imull %r12d, %edx	HWPGO	<pre>cmovgeq %rdi, %r13 cmovll %ebp, %edx leaq (%r15,%r13), %rcx callq nop movl (%r13,%r15), %eax movl %eax, (%r14,%r15) incq %r12 addq \$4, %r15 cmpq \$20000, %r12 jne .LBB0_1</pre>
movq %r15, %rcx callq nop		

jmp

.LBB0_4

Before HWPGO:	After HWPGO:
perf stat -e cles:u,instructions,br_inst_retired.all_branches:u,br_misp_retired.all_branches ./unpredictable	<pre>\$ perf stat -e cycles:u,instructions,br_inst_retired.all_branches:u,br_misp_retired.all_branches/unpredictable.hwpgo</pre>
erformance counter stats for './unpredictable': +10% retired instructions	Performance counter stats for './unpredictable.hwpgo':
+10% retired instructions 3,243,043,047 cycles:u 3,619,535,187 instructions:u # 1.12 insn per cycle 917,083,309 br_inst_retired.all_branches:u 85,966,707 br_misp_retired.all_branches:u 1.021617622 seconds time elapsed	1,715,030,113 cycles:u 2XIPC 4,000,954,710 instructions:u # 2.33 insn per cycle 600,132,829 br_inst_retired.all_branches:u
1.8X improvement in overall per	formance
1.0X improvement in overall pen	Ionnance

SPGO/HWPGO Compiler Support on Windows

- Windows (and Linux) HWPGO feature supported since Intel[®] oneAPI DPC++/C++ Compiler 2024.0 release
 - LLVM-based Intel proprietary compiler released in Nov 2023
 - https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guidereference/current/hardware-profile-guided-optimization.html
 - https://www.intel.com/content/www/us/en/developer/articles/technical/hwpgo.html
- Basic Windows (and Linux) SPGO/HWPGO features now available in LLVM trunk as of Mar 2024
 - https://clang.llvm.org/docs/UsersManual.html#id50
 - Features mostly contributed by Intel ported from the Intel proprietary codebase above
 - Requires use of Intel VTune SEP from oneAPI 2024.0
- These are the first Windows compilers to support SPGO/HWPGO

Windows Support: Profiling Tool

mmapped size

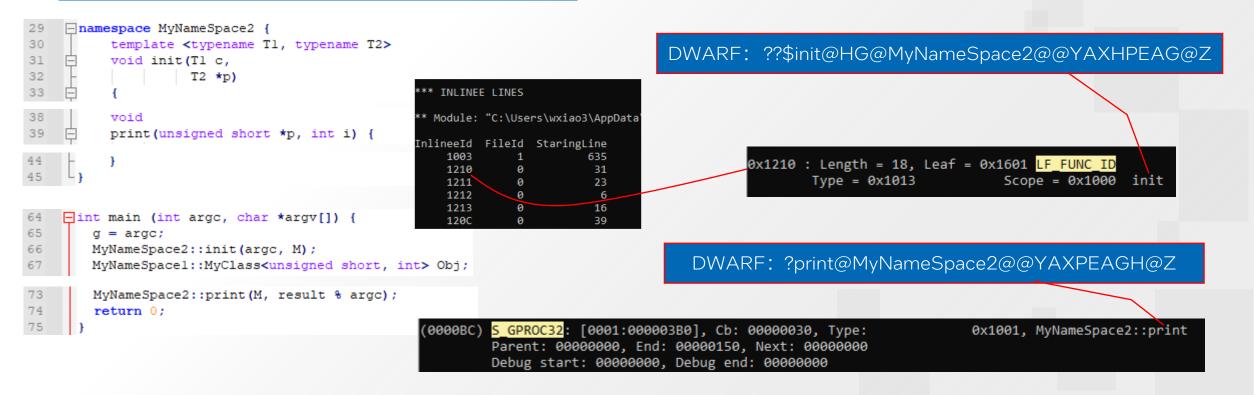
Intel® VTune[™] SEP supports Linux perf script output format since oneAPI 20

bin path

\$ sep -perf-script event, ip, brstack -ec BR_INST_RETIRED.NEAR_TAKEN ...

page offset

1 PERF_RECORD_MMAP2 20068/0: [0x7ff693d60000(0x2f000) @ 0x1000 00:00 0 0]: r-xp c:\Users\wxiao3\opt\hwpgo-mispredict-example\unpredictable.exe 2 PERF_RECORD_MMAP 20068/0: [0x7ffdede10000(0x216000) @ 0x1000]: x c:\Windows\System32\ntdll.dll /v/v/v/cycles syntax in the following order: 3 PERF_RECORD_MMAP 20068/0: [0x7ffdecd30000(0xc4000) @ 0x1000]: x c:\Windows\System32\kernel32.dll FROM: branch source instruction 4 PERF_RECORD_MMAP 20068/0: [0x7ffdeb550000(0x3a6000) @ 0x1000]: x c:\Windows\System32\KernelBase.dll TO : branch target instruction 5 PERF_RECORD_MMAP 20068/0: [0x210c8c40000(0x14000) @ 0x1000]: x c:\Windows\System32\umppc17807.dll M/P/-: M=branch target mispredicted or branch direct X/- : X=branch inside a transactional region. -=not <u>6 PEPE PECORD_MMAP 20068/0: [0x210c8c80000(0x14000) @ 0x1000]: x c:\Windows\System32\umppc17807.dll</u> A/- : A=TSX abort entry, -=not aborted region or not Event name ECORD_MMAP 20068/0: [0x210c8c80000(0x14000) @ 0x1000]: x c:\Windows\System32\umppc17807.dll cycles o ٢٢٢٢ - ٢ ECORD_MMAP 20068/0: [0x7ffdea190000(0x18000) @ 0x1000]: x c:\Windows\System32\kernel.appcore.dll 9 PERF_RECORD_MMAP 20068/0: [0x7ffdebb60000(0xa7000) @ 0x1000]: x c:\Windows\System32\msvcrt.dll **10** BR_INST_RETIRED.NEAR_TAKEN:pdir: 7ff693d613e0 0x7ff693d613e0/0x7ff693d61086/M/-/-/0 0x7ff693d61081/0x7ff693d613e0/-/X/A/0 0x7ff693d61086/0 <u>x7ff693d61040/M/-/-/0 0x7ff693d613e0/0x7ff693d51086/M/-/-/0 0x7ff693d61081/0x7ff693d613e0/P/X/A/0 0x7ff693d613e0/0x7ff693d6103d/P/-/-/0 0x7ff693d6103</u> 8/0x7ff693d613e0/P/X/-/0 0x7ff693d61064/0x7ff693d61030/P/-/-/0 0x7ff693d61086/0x7ff693d61040/M/-/-/0 0x7ff693d613e0/0x7ff693d61086/M/-/-/0 0x7ff693d6 1081/0x7ff693d613e0/-/X/A/0 0x7ff693d61 ID f693d61040/M/-/-/0 0x7ff693d613e0/0x7ff693d61086/M/-/-/0 0x7ff693d61081/0x7ff693d613e0/P/X/A/0 0x7ff69 3d613e0/0x7ff693d6103d/P/-/-/0 0x7ff693d61040/M/-/A/0 0x7ff693d61064/0x7ff693d61030/P/-/-/0 0x7ff693d61086/0x7ff693d61040/M/-/-/0 0x7f f693d613e0/0x7ff693d61086/M/-/-/0 0x7ff693d61081/0x7ff693d613e0/P/-/-/1 0x7ff693d613e0/0x7ff693d6103d/P/-/-/0 0x7ff693d61038/0x7ff693d613e0/M/-/A/0 0 x7ff693d61064/0x7ff693d61030/P/-/-/0 0x7ff693d61086/0x7ff693d61040/M/-/-/0 0x7ff693d613e0/0x7ff693d61086/M/-/-/0 0x7ff693d61081/0x7ff693d613e0/-/X/A/ 0 0x7ff693d613e0/0x7ff693d6103d/-/-/A/0 0x7ff693d61038/0x7ff693d613e0/P/X/A/0 0x7ff693d61064/0x7ff693d61030/M/X/A/0 0x7ff693d613e0/0x7ff693d6103d/P/-0x7ff693d61038/0x7ff693d613e0/-/X/A/0 0x7ff693d61064/0x7ff693d61030/P/-/-/0


base addr

PID

Windows Support: How Symbolization is Handled

Use DWARF Instead of PDB

PDB encode de-mangled (display) names DWARF encode mangled (linkage) names

Windows Support: Changes made to Ilvm-profgen

Understand COFF/PE with DWARF by enhancing:

ProfileGenerator

PerfReader

void PerfScriptReader::updateBinaryAddress(const MMapEvent &Event) bool PerfScriptReader::extractMMap2EventForBinary(ProfiledBinary *Binary, StringRef Line, MMapEvent &MMap)

ProfiledBinary

void ProfiledBinary::load()

void ProfiledBinary::setPreferredTextSegmentAddresses(const ELFObjectFileBase *Obj void ProfiledBinary::setUpDisassembler(const ELFObjectFileBase *Obj) void ProfiledBinary::disassemble(const ELFObjectFileBase *Obj) https://github.com/tcreech-intel/hwpgo-mispredict-example

Microsoft Teams

HW-based PGO Demo

2024-04-08 03:42 UTC

Recorded by Xiao, Wei3 Organized by

Xiao, Wei3

Challenges & Solutions

Usability

 Many flags (-fdebug-info-for-profiling, -funique-internal-linkagenames, -gdwarf, /debug:dwarf, ...) needed to produce good debug info. Need to consolidate/simplify.

>OneAPI compilers have "-fprofile-sample-generate"

 Multiple profile types (frequency, branch mispredicts, etc.) will become difficult to produce, manage, and pass to the compiler.

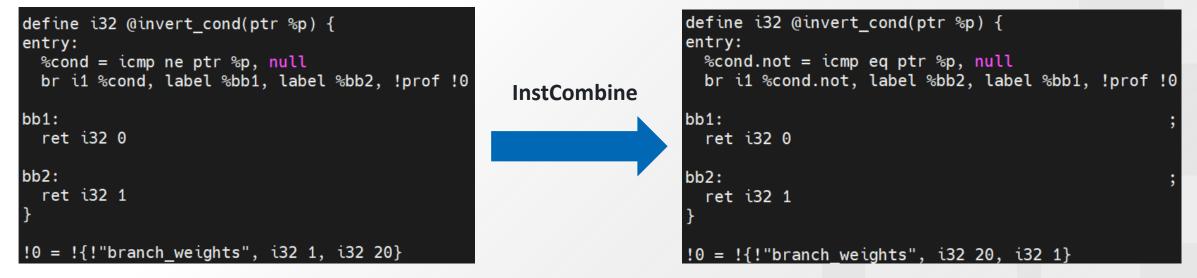
Considering profile "bundles" and higher-level tools to drive creation of PMU profiles.

Challenges & Solutions (2)

Debug Info Accuracy

- HWPGO uses debug information (such as DWARF) to associate profile data from the optimized binary to source code and compiler IR.
 - ➢ Pro: neither prevent any optimizations nor add run-time overhead to the profiling binary.
 - ➢ Con: suffer from inaccurate correlation with aggressive optimizations.
- Solutions:
 - ≻ Enhance Debug Info.
 - ≻ Turn off aggressive optimizations.
 - ► PSEUDO-INSTRUMENTATION.

Initial selection DAG: %bb.14 'foo:entry'
SelectionDAG has 5 nodes:
 t0: ch,glue = EntryToken
 t2: i64,ch = CopyFromReg t0, Register:i64 %1, jump_table.c:4:3
 t4: ch = br_jt t2:1, JumpTable:i64<0>, t2, jump_table.c:4:3


https://github.com/llvm/llvm-project/pull/71021

1	unpredictable:12711006836:0
2	0:0
3	3.1: 200031858
4	3.2: 200031858
5	5: 200031858
6	6: 116870734
7	7: 116870734
8	8: 121580402 nop:121580402
9	11: 84838540 nop:84838540
10	13: 200031858
11	15: 0
12	65517: 116870734
13	nop:192386712:206418942
14	1: 192386712

Challenges & Solutions (3)

Profile Maintenance

- After each optimization, profile (probability) needs to be adjusted to reflect control flow graph changes if any.
- Example below shows one of the bug-fixes made recently:

https://github.com/llvm/llvm-project/pull/86470

Challenges & Solutions (4)

Value Profiling

 If both PEBS and LBR records are captured, we can sample both function call counts and function limited arguments

\$ perf record --user-regs -b -e xxx

BR INST RETIRED.NEAR TAKEN:uppp: 401168 ABI:2 AX:0x1 BX:0x1d0a03c CX:0x1d023c0 DX:0x1ceeb30 ST:0x3 DI:0x1d0a03c BP:0x1f1f SP:0x7ffde51a1868 IP:0x401168 FLAGS:0x8 R8:0x1d15c50 R9:0x1 R11:0x1d23000 SS:0x2b R10:0xfff R12:0x1d15c50 R13:0x1cf67 R14:0x1d0a038 R15:0x1cdb2a0 0x401168/0x4016b0/P/-/-/18 0x401193/0x401160/M/-/-/3 0x4016b0/0x 40116d/P/-/-/8 0x401168/0x4016b0/P/-/-/18 0x401193/0x401160/M/-/-/3 0x4016b0/0x40116d/P/-/-/8 1168/0x4016b0/P/-/-/15 0x401193/0x401160/M/-/-/3 0x4011b5/0x401170/P/-/-/1 0x4016b0/0x4011b5/P/-/-/ 0x4011b0/0x4016b0/P/-/-/10 0x4016b0/0x40116d/P/-/-/7 0x401168/0x4016b0/P/-/-/14 0x401193/0x40116 0/M/-/-/3 0x4011b5/0x401170/P/-/-/1 0x4016b0/0x4011b5/P/-/-/1 0x4011b0/0x4016b0/P/-/-/29 0x401170/P/-/-/1 0x4016b0/0x4011b5/P/-/-/1 0x4011b0/0x4016b0/P/-/-/29 0x4011b5/0x401170/P/-/-/1 4016b0/0x4011b5/P/-/-/1 0x4011b0/0x4016b0/P/-/-/28 0x4011b5/0x401170/P/-/-/1 0x4016b0/0x4011b5/P/-/ 0x4011b0/0x4016b0/P/-/-/37 0x4016b0/0x40116d/P/-/-/7 0x401168/0x4016b0/P/-/-/18 0x401193/0x401 /M/-/-/6 0x4016b0/0x40116d/P/-/-/7 0x401168/0x4016b0/P/-/-/4 0x401193/0x401160/M/-/-/3

List of PRs checked into LLVM Trunk so far

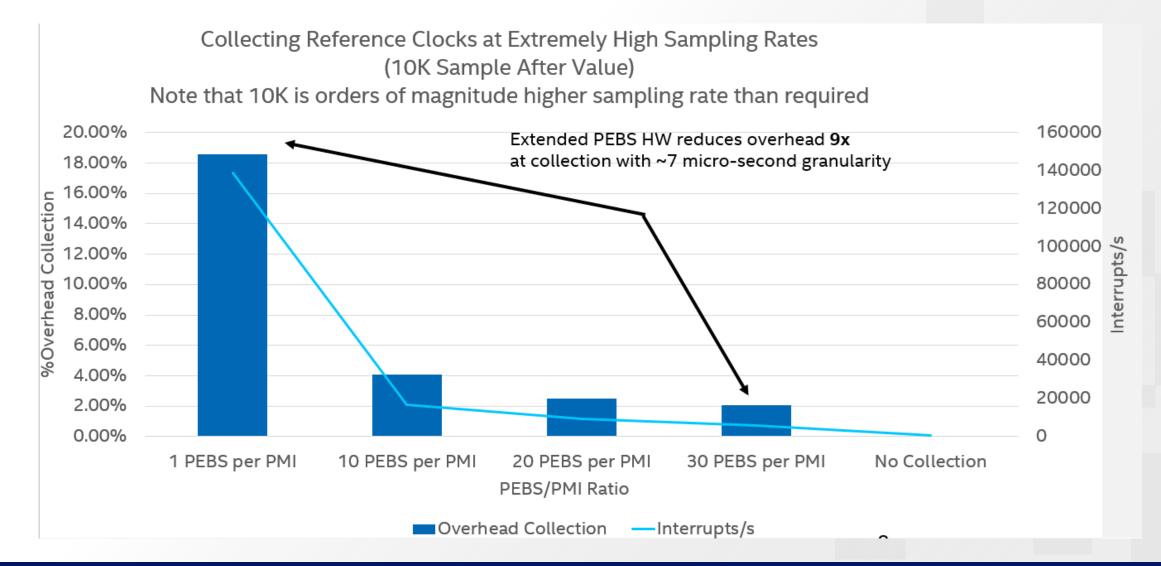
- Refer to: <u>https://clang.llvm.org/docs/UsersManual.html#using-sampling-profilers</u>
- [Ilvm-profgen] Support COFF binary: <u>83972</u>
- [LLD] [COFF] Port -lto-sample-profile to COFF version of LLD: <u>85701</u>
- Update documentation and release notes for llvm-profgen COFF support: <u>84864</u>
- Profile Maintenance:
 - LoopRotate: <u>86496</u>
- DebugInfo Fix:
 - JumpTable: <u>71018</u>, <u>72075</u>, <u>72082</u>, <u>72118</u>, <u>71021</u>
 - ➢ CodeGen: <u>72192</u>
- Support –gsplit-dwarf for COFF (RFC: <u>71276</u>):
 - MC: <u>D151793</u>, <u>D152119</u>, <u>D152229</u>, <u>D152340</u>
 - Clang & MC: <u>D152785</u>, 82dff24bde112984314568e7d581379fd0ea48e6
 - [LLD][COFF]: <u>D154070</u> (to support /dwodir for LTO)
 - Clang: <u>D154176</u>, <u>D154295</u>
- Emit symbol-table for COFF:
 - ➤ [LLD][COFF]: <u>D149235</u>
- Fix HW-based PGO/Sampling-based PGO gap with Instrumentation-based PGO:
 - InlineCost: <u>66457</u>
 - InstCombine: <u>68474</u>, <u>68502</u>

Summary

- HW-based PGO is an extension of existing Sampling-based PGO for:
 - ➤Lower overhead
 - ➢ Higher accuracy
 - New feedback capabilities for higher performance gains
- Call community collaboration on HW-based PGO to:
 - Add infrastructure to support more feedback/profile types besides frequency
 - Add optimizations for new feedback/profile types
 - Enhance Debug Info Accuracy
 - Enhance Profile Maintenance
 - ➢ Support Value Profiling

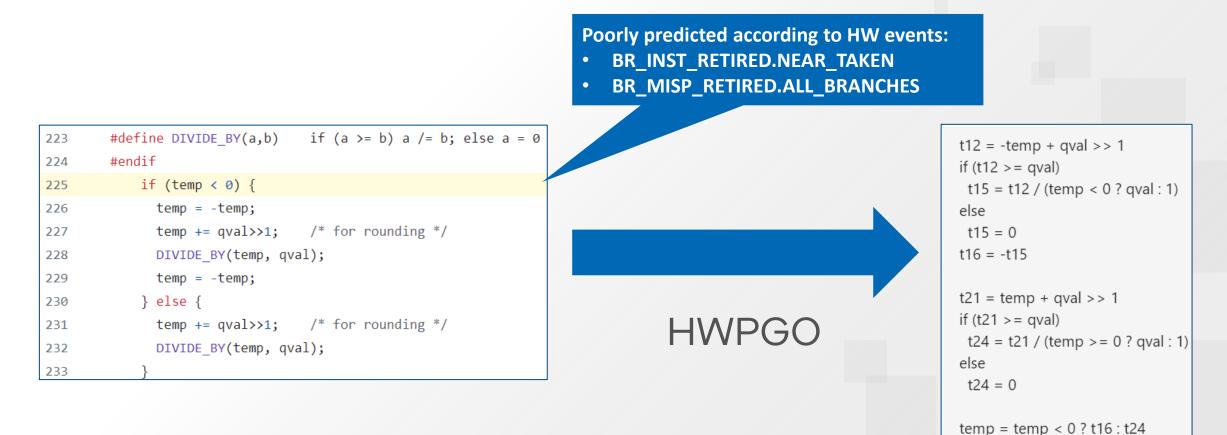
21

Legal Disclaimer & Optimization Notice


- INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
- Software and workloads used in performance tests may have been optimized for performance only on Intel
 microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
 components, software, operations and functions. Any change to any of those factors may cause the results to vary. You
 should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
 including the performance of that product when combined with other products.
- Copyright © 2024, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804



Collection Overhead Reduced by Extended PEBS

Branch Mispredict Feedback CoreMark[®]-PRO Example:

coremark-pro/benchmarks/consumer_v2/cjpeg/jcdctmgr.c

New Feedback Capabilities Branch Mispredict Feedback CoreMark®-PRO Example: Before HWPGO:

Performance counter s	tats for './cjpeg-rose7-preset.exe	e.Var	nilla -v0 -i1500':		-33%	Performance counter s	tats for './cjpeg-rose7-preset.exe	.Nev	v -v0 -i1500':		
4,255.40 mse	c task-clock	#	0.998 CPUs utilized			→ 3,118.57 mse	c task-clock	#	0.997 CPUs utilized		
18	context-switches	#	4.230 /sec			10	context-switches	#	3.207 /sec		
1	cpu-migrations	#	0.235 /sec			1	cpu-migrations	#	0.321 /sec		
178	page-faults	#	41.829 /sec			177	page-faults	#	56.757 /sec		
22,051,463,005	cpu_core/cycles/	#	5.182 G/sec		+17%	16,174,859,445	cpu_core/cycles/	#	5.187 G/sec		
<not counted=""></not>	cpu_atom/cycles/			(0.	00%) I / / O	<not counted=""></not>	cpu_atom/cycles/			(0	0.00%)
48,356,977,972	cpu_core/instructions/	#	11.364 G/sec			56,997,553,072	cpu_core/instructions/	#	18.277 G/sec		
<not counted=""></not>	cpu_atom/instructions/			(0.	00%)	<not counted=""></not>	cpu_atom/instructions/			(0	0.00%)
4,727,869,197	cpu_core/branches/	#	1.111 G/sec			4,751,693,034	cpu_core/branches/	#	1.524 G/sec		
<not counted=""></not>	cpu_atom/branches/			(0.	00%)	<not counted=""></not>	cpu_atom/branches/			(0	0.00%)
436,828,793	cpu_core/branch-misses/	#	102.653 M/sec			186,405,909	cpu_core/branch-misses/	#	59.773 M/sec		
<not counted=""></not>	cpu_atom/branch-misses/			(0.	00%)	<not counted=""></not>	cpu_atom/branch-misses/			(0	0.00%)
132,308,528,448	cpu_core/slots/	#	31.092 G/sec			97,048,835,412	cpu_core/slots/	#	31.120 G/sec		
44,620,028,215	cpu_core/topdown-retiring/	#	33.6% Retiring			53,277,581,186	cpu_core/topdown-retiring/	#	54.9% Retiring		
36,836,285,578	cpu_core/topdown-bad-spec/	#	27.7% Bad Speculation			23,213,761,622	cpu_core/topdown-bad-spec/	#	23.9% Bad Speculation		
36,839,837,672	cpu_core/topdown-fe-bound/	#	27.7% Frontend Bound			9,898,710,296	cpu_core/topdown-fe-bound/	#	10.2% Frontend Bound		
14,531,129,481	cpu_core/topdown-be-bound/	#	10.9% Backend Bound			10,658,832,092	cpu_core/topdown-be-bound/	#	11.0% Backend Bound		
519,327,103	cpu_core/topdown-heavy-ops/	#	0.4% Heavy Operations	#	33.2% Light Operations	381,031,756	cpu_core/topdown-heavy-ops/	#	0.4% Heavy Operations	#	54.5
36,836,233,341	cpu_core/topdown-br-mispredict/	#	27.7% Branch Mispredict	#	0.0% Machine Clears	23,213,662,047	cpu_core/topdown-br-mispredict/	#	23.9% Branch Mispredict	#	0.0
22,311,685,681	cpu_core/topdown-fetch-lat/	#	16.8% Fetch Latency	#	10.9% Fetch Bandwidth	4,950,077,068	cpu_core/topdown-fetch-lat/	#	5.1% Fetch Latency	#	5.1
2,077,047,233	cpu_core/topdown-mem-bound/	#	1.6% Memory Bound	#	9.4% Core Bound	381,678,995	cpu_core/topdown-mem-bound/	#	0.4% Memory Bound	#	10.6

4.265031168 seconds time elapsed

4.252556000 seconds user 0.004000000 seconds sys

Pe

3.128461260 seconds time elapsed

- Call community collaboration on HWPGO to:
 Add infrastructure support for more feedback/profile types besides frequency (i.e., "-fprofile-sample-use=code.freq.prof")
- Add optimizations for new profile types

intel software 27

54.5% Light Operations 0.0% Machine Clears 5.1% Fetch Bandwidth 10.6% Core Bound

Windows Support: Ilvm-profgen

Canonicalize WINDOWS Virtual Address for COFF/PE

// Canonicalize to use preferred load address as base address.
uint64_t canonicalizeVirtualAddress(uint64_t Address) {
 return Address - BaseAddress + getPreferredBaseAddress();

Disasm	General	DOS Hdr	File Hdr	Optional Hdr	Section Hdrs	Imports		
Offset	Name			Value	Value			
90	Magic			20B	NT64			
92	Linker Ve	er. (Major)		E				
93	Linker Ve	er. (Minor)	(0				
94	Size of C	ode	:	3A00				
98	Size of In	itialized Data	a i	3000				
9C	Size of U	ninitialized [)ata (0				
A0	Entry Po	int		4068				
A4	Base of C	Code		1000				
A8	Image Ba	ase		140000000 🧖				
BO	Section A	Alignment		1000				
B4	File Aligr	nment	1	200				
B8	OS Ver. (Major)		6	Windows Vista / S	erver 2008		
BA	OS Ver. (Minor)	(0				
BC	Image Ve	er. (Major)	(0				

5	P		ECORD_MMA	P2 1764/	0: [0×00007	FF9F327100	0(0x294000) @	0x1000]:	x C:\Windows\	System32\KernelBase.
6	Ы	ERF_N	CORD_MMA	P2 1764/	0: [0x00007	FF9F266100	0(0xfa000)@	0x1000]: x	C:\Windows\S	System32\ucrtbase.dll
7 PERF_RECORP_MMAP2 1764/0: [0x00007ff9f2531000(0x11000) @ 0x1000]: x C:\Windows\System32\kernel.appcore.dl										
8 PERF_RECORD_MMAP2 1764/0: [0x00007ff9ef461000(0x1a000) @ 0x1000]: x C:\Windows\System32\vcruntime140.dll 9 PERF RECORD MMAP2 1764/0: [0x00007ff9ef451000(0xc000) @ 0x1000]: x C:\Windows\System32\vcruntime140 1.dll										
10										System32\msvcp140.dll
										t\spgo\sort\sort.exe
								<u> </u>		
n.	<u> </u>	a ot 7	Tox+So	amont	Offset()			Evon	t.Offset	
'y-		yeri	exide	ginen	Onser()			Even	i.Onsei	
	Dis	asm	General	DOS Hd	r File Hdr	Optional H	Idr Section H	drs 📄 Imp	oorts 👘 Exce	eption 📄 BaseReloc.
	+	5	2	\mathbf{N}						
_					1			1		
N	lan	ne	Raw Addr.	Raw size	Virtual Addr.	Virtual Size	Characteristics	Ptr to Reloc.	Num. of Reloc.	Num. of Linenum.
)	> .	text	400	3A00	1000	3926	60000020	0	0	0
)	> .	rdata	3E00	2200	5000	20C4	40000040	0	0	0
)	> .	data	6000	400	8000	4EB50	C0000040	0	0	0
- 3	> .	pdata	6400	600	57000	444	40000040	0	0	0
3	> .	00cfg	6A00	200	58000	28	40000040	0	0	0
)	> .	voltbl	6C00	200	59000	18	0	0	0	0
	<u> </u>	reloc	6E00	200	5A000	A0	42000040	0	0	0
	•									

HWPGO Documentation/Links

Intel[®] oneAPI DPC++/C++ Compiler:

- <u>https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/current/hardware-profile-guided-optimization.html</u>
- https://www.intel.com/content/www/us/en/developer/articles/technical/hwpgo.h tml
- <u>https://github.com/tcreech-intel/hwpgo-mispredict-example</u>
 LLVM:
- https://clang.llvm.org/docs/UsersManual.html#using-sampling-profilers
- Unmerged branch mispredict feedback features:
 - https://github.com/tcreech-intel/llvm-project/tree/ip_profiles
 - https://github.com/tcreech-intel/llvm-project/tree/unpredictable_loader
 - https://github.com/tcreech-intel/llvm-project/tree/aggressive_speculation

SPEC CPU2017 Performance on IceLake Windows Server

llvm-trunk 20240408	Default (Normalized Performance)	HW-based PGO	Instrumentation-based PGO
500.perlbench_r	100%	110.19%	113.63%
502.gcc_r	100%	103.13%	105.28%
511.povray_r	100%	106.37%	110.41%

HW-based PGO

- 1st build: /clang:-fdebug-info-for-profiling /clang:-funique-internal-linkage-names -gdwarf -gline-tables-only -fuse-Id=Ild
- 2nd build: /clang:-fprofile-sample-use=default.profdata -gline-tables-only -fuse-ld=lld