
State of Clang
as a C and C++

Compiler
Where are we at, where are we
going, and how are we doing?

with Aaron Ballman

Retrospective
01.

How have things been going over the past
few years?

C++2c
and C2y

Clang 17 started work on the
upcoming C and C++ standards
● C++2c is expected in 2026
● C2y is expected sometime

between 2026 and 2029

Both standards are expected to add
significant new features, but neither
has added a feature requiring major
effort (yet).

Completed C++2c features

User-generated
static_assert messages

constexpr cast from void *

Placeholder variables with
no name

= delete(“should have a
reason”)

Attributes on structured
bindings

Unevaluated strings

17

17

19

19

18
18

Trivial infinite loops are not UB

Remove deprecated arithmetic
conversion on enumerations

Disallow binding a returned
glvalue to a temporary

Pack indexing

Template parameter
initialization

And more!

Completed C++2c features
19

18

19

19

18

Completed C2y features

_Generic with a type operand

++ and -- on _Complex values

_Complex literals

Zero-length operations on
null pointers

17

Always

Always
Always

typeof & typeof_unqual

Always

C++23
and C23

C++23 and C23 were both ratified by the
standards committees in 2023 and are final,
despite not being officially published by ISO
● Clang 19 is almost C++23 feature-

complete, but lacks support for
constexpr math, unknown pointers in
constexpr, and explicit lifetime
management

● Clang 19 implements significant support
for C23, but lacks support for Decimal
Floating Point and storage class
specifiers for compound literals

Deducing this

Portable assumptions

Relaxing some constexpr
restrictions

consteval needs to
propagate up

And more!

Completed C++23 features

19

19

19

17

Completed C23 features

constexpr for object
definitions

Remove trigraphs??!

Type inference for object
declarations (auto)

char8_t

Free positioning of labels

#embed

19

18

18

19

18

19

Revise spellings of keywords

Consistent initialization with {}

nullptr and nullptr_t

Unreachable flow control

And more!

Completed C23 features
17

17

17

17

C++20
and C++17

C++20 was a major evolutionary
change to C++, introducing major
features like Modules, Concepts, and
operator <=>,
● Clang 19 is almost C++20 feature

complete, does not officially
support modules

Thanks to significant efforts improving
template sugaring and template
template-argument matching, Clang
19 is now C++17 feature complete

Completed C++20 features

Concepts

CTAD for alias aggregates

operator <=>

Lambdas in unevaluated
contexts

Generalized NTTP of scalar
types

consteval

19

17

17

18

17
17

What’s going
on with
Modules?

Modules were added to C++20, work
started on them in Clang 11
● Support is partial in Clang 19, feature

test macro is not defined
● However, C++ modules are

well-supported in Clang 19 and
should work for common
usage patterns

● Still to be done (Issue #112295):
● Diagnostics for TU-local entities
● Module-level lookup

● Community is continuing to work
towards full support

C conformance by the numbers
as of Oct 15, 2024

C++ conformance by the numbers

Clang is fully conforming to C++11, C++14, and C++17

as of Oct 15, 2024

Defect reports by the numbers
as of Oct 15, 2024

How ‘bout now, brown cow?

02.

What are we up to today?

• Variadic friends
• constexpr placement

new
• Reflection
• Contracts

C++2c

Current C++ Efforts

C++20

C++23

Extensions

• Lifetime extension in
range-based for loops

• Unknown pointers and
references in constant
expressions

• CTAD for inherited
constructors

• constexpr math

• Modules!
• Defect reports

• SYCL, OpenACC
• Analyses for real-time

code

Current C Efforts

• Testing existing extensions
that were standardized

• New features (_Lengthof,
'if' declarations, named
loops, etc)

C2y • Improved normal
enumerations

• Enumerations with a
fixed underlying type

• Decimal floating-point
support

C23

• Bounds safety
checking!

• Connecting flexible
array members to their
count

Extensions
• Hardening diagnostics
• Conformance testing

Other

Word on the street
03.

What are people saying about Clang?

Performance matters

Runtime Performance

• Clang and GCC are
competitive with each
other

• Clang and MSVC are
competitive with each
other

• Vector math optimizes
very well, even in debug
mode

Compile Time Performance
• Compile times are getting slower

with mixed results for runtime
• Folks are using –ftime-trace and

are still not successful
• It’s not just Clang; C++ features

are adding significant overhead
and that impacts all vendors

https://www.phoronix.com/review/gcc-clang-eoy2023
https://www.phoronix.com/review/gcc-clang-eoy2023
https://forums.unrealengine.com/t/large-performance-regression-in-ue5-cpu-performance/1524868
https://forums.unrealengine.com/t/large-performance-regression-in-ue5-cpu-performance/1524868
https://aras-p.info/blog/2024/09/14/Vector-math-library-codegen-in-Debug/
https://aras-p.info/blog/2024/09/14/Vector-math-library-codegen-in-Debug/
https://news.ycombinator.com/item?id=40856885
https://zeux.io/2022/01/08/on-proebstings-law/
https://aras-p.info/blog/2019/01/12/Investigating-compile-times-and-Clang-ftime-report/
https://www.reddit.com/r/cpp/comments/kbojn0/i_almost_give_up_on_compile_time_optimization/
https://www.reddit.com/r/cpp/comments/o94gvz/what_happened_with_compilation_times_in_c20/
https://www.reddit.com/r/cpp/comments/o94gvz/what_happened_with_compilation_times_in_c20/

clang-tidy

Tooling matters

• Seeing increased use of
clang-tidy, especially in
precommit CI

• Folks are integrating it in
CMake scripts as part of
their build process

clang-format
• Being integrated into

many different tools
(MSVC, vim, emacs, Clion,
ReSharper, etc)

• Number of options can be
overwhelming, but users
appreciate the flexibility

• Also has a lot of
precommit CI integration

clangd
• Very popular, especially

with VS Code users, but is
flexible enough to be used
with almost anything

https://blog.jetbrains.com/clion/2024/01/the-cpp-ecosystem-in-2023/
https://www.reddit.com/r/cpp/comments/bh8dbt/precommit_cc_integrations_clangformat_clangtidy/
https://danielsieger.com/blog/2021/12/21/clang-tidy-cmake.html
https://www.reddit.com/r/cpp_questions/comments/1bkygl0/is_there_an_ai_formatting_tool_as_an_alternative/
https://news.ycombinator.com/item?id=41694041
https://www.reddit.com/r/neovim/comments/17rhvtl/guide_how_to_use_clangd_cc_lsp_in_any_project/

Standards committees matter

WG14 (C) and WG21 (C++)
• C committee is happy with Clang’s ongoing

implementation of C23
• C++ committee is happy with Clang, some concerns

about speed of implementing newer C++ standards
• Both committees have some members concerned that

compiler extensions eat into committee design space
• There’s no good mechanism for community

collaboration with the standards committees on
feature design

Overall external perception

Good Stuff
• Users are excited by some of

our extensions (a lot of love for
–fbounds-safety)

• Users appreciate the full suite of
offerings from Clang (compiler,
static analyzer, tooling, etc)

• We are competitive in terms of
features and performance

• We still have very good
diagnostic messages and
standards conformance

• Users appreciate Clang as an
alternative to GCC and MSVC

Less Good Stuff
• People notice that we’re not fully

conforming to the latest standards
• There’s some frustration about

compile time overhead
• Our documentation needs love
• Perception is that corporate interests

dictate project direction rather than
being a “real” OSS project

Wrapping it up
04.

My thoughts on how things are going

Kudos!
We’ve made serious changes which
have improved the user experience:
● Clang 13/14 release notes were

almost empty; users noticed, we
reacted, and Clang 17/18/19 each
have hundreds of release notes

● We’re improving how we interact
on issues; a little bit less like
screaming into the void now

● We’ve grown! More people helping
with code reviews, issue triage,
answering questions, etc than ever
before!

What can we improve?

We can’t buy a
test suite, so

what do we do?

Docs

Especially around
implementation-
defined behaviors

and extensions

Issues

We need to improve on
reacting to issues,

especially regressions

Testing Growth

How do we grow the
community,

especially in non-
coding areas?

No, but
seriously,
Kudos!

We wouldn’t have anything to offer
anyone if it wasn’t for the many, many
volunteers who make Clang what it is.
Thank you!

Slidesgo

Flaticon

Freepik

CREDITS: This presentation template
was created by Slidesgo, including

icons by Flaticon, infographics &
images by Freepik

THANKS!
Do you have any questions?

Email:
aaron@aaronballman.com
Discord/IRC/GitHub/Discourse:
AaronBallman

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:aaron@aaronballman.com
mailto:aaron@aaronballman.com

	Slide 1: State of Clang as a C and C++ Compiler
	Slide 2: Retrospective
	Slide 3: C++2c and C2y
	Slide 4: Completed C++2c features
	Slide 5: Trivial infinite loops are not UB
	Slide 6: Completed C2y features
	Slide 7: C++23 and C23
	Slide 8: Deducing this
	Slide 9: Completed C23 features
	Slide 10: Revise spellings of keywords
	Slide 11: C++20 and C++17
	Slide 12: Completed C++20 features
	Slide 13: What’s going on with Modules?
	Slide 14: C conformance by the numbers
	Slide 15: C++ conformance by the numbers
	Slide 16: Defect reports by the numbers
	Slide 17: How ‘bout now, brown cow?
	Slide 18: C++2c
	Slide 19: Current C Efforts
	Slide 20: Word on the street
	Slide 21: Performance matters
	Slide 22: clang-tidy
	Slide 23: Standards committees matter
	Slide 24: Overall external perception
	Slide 25: Wrapping it up
	Slide 26: Kudos!
	Slide 27: What can we improve?
	Slide 28: No, but seriously, Kudos!
	Slide 29: THANKS!

