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https://www.chromium.org/Home/chromium-security/memory-safety/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

70% of security bugs
are memory safety issues
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T-compiler WG-LLVM

T-lang T-opsem

Upstream LLVM

Team lead

Lead maintainer

I work here

T = Team, WG = Working Group



Supported LLVM versions

● Current LLVM main (20-dev)
● Current LLVM release (19)

○ Default, used by official rustup binaries
● One or two older LLVM releases (18, 17)

○ For distros
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Supported LLVM versions

● Current LLVM main (20-dev)
● Current LLVM release (19)

○ Default, used by official rustup binaries
● One or two older LLVM releases (18, 17)

○ For distros

● LLVM fork for backport management only, no Rust-specific patches
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Rust MIR

MIR 
optimizations

LLVM backend

Cranelift backend

GCC backend

Default, production use

Fast unoptimized builds

Exotic targets
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Correctness

Performance

Compilation Time

More important

Less important
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● Compilation unit is crate (vs file in C/C++)
○ Mitigation: CGU partitioning + Crate-local ThinLTO



Compilation Time

22

Core 1
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Core 3

Core 4

Core 5

Core 6
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Whole crate

● Compilation unit is crate (vs file in C/C++)
○ Mitigation: CGU partitioning + Crate-local ThinLTO



CGU partitioning and Crate-Local ThinLTO
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Compilation Time

● Compilation unit is crate (vs file in C/C++)
○ Mitigation: CGU partitioning + Crate-local ThinLTO

● Generics produce huge amounts of IR
○ Mitigation: MIR optimization, share-generics, polymorphization(?)

24



Monomorphization

25

foo<T> Monomorphization foo<i32>

foo<i8>

foo<u32>



Monomorphization

26

foo<T> Monomorphization foo<i32>

foo<i8>

foo<u32>

LLVM optimizations

LLVM optimizations

LLVM optimizations



Monomorphization

27

foo<T> Monomorphization foo<i32>

foo<i8>

foo<u32>
MIR 

optimizations

LLVM optimizations

LLVM optimizations

LLVM optimizations



Compilation Time

● Compilation unit is crate (vs file in C/C++)
○ Mitigation: CGU partitioning + Crate-local ThinLTO

● Generics produce huge amounts of IR
○ Mitigation: MIR optimization, share-generics, polymorphization(?)

● LLVM is slow
○ Mitigation: Make LLVM faster
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LLVM 10 upgrade
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https://perf.rust-lang.org/compare.html?start=c5840f9d252c2f5cc16698dbf385a29c5de3ca07&end=97588aeda139309169b11654fc809e1ac5fd246c



LLVM compilation time tracker
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https://llvm-compile-time-tracker.com/graphs.php?startDate=2021-02-04&interval=100&relative=on&bench=geomean&width=800



LLVM 19 upgrade
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https://perf.rust-lang.org/compare.html?start=e552c168c72c95dc28950a9aae8ed7030199aa0d&end=0b5eb7ba7bd796fb39c8bb6acd9ef6c140f28b65



Performance
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Specific optimization problems

● Bounds check elimination
○ Usually works, but not reliable
○ Good: Constant bounds, straight-line code. Bad: Checks in loops.
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Specific optimization problems

● Bounds check elimination
○ Usually works, but not reliable
○ Good: Constant bounds, straight-line code. Bad: Checks in loops.

● memcpy elimination
○ Rust has no NRVO -> many memcpys

● Inclusive ranges
○ 0..n often optimized much better than 0..=n
○ Conditional increment to handle n == u32::MAX correctly
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Performance: Telling LLVM about Rust semantics

● Rust has many very strong guarantees
● Conveyed to LLVM using attributes, metadata and assumes

○ noalias, readonly, dereferenceable, nonnull, range, etc.
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Performance: Telling LLVM about Rust semantics

● Rust has many very strong guarantees
● Conveyed to LLVM using attributes, metadata and assumes

○ noalias, readonly, dereferenceable, nonnull, range, etc.
● Problem: Metadata/attributes get lost. Assumes don't get lost enough.
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Attributes motivated by Rust needs

● Allocator attributes
○ Teach LLVM about Rust's custom allocation functions

● Range attributes
○ Previously only available as load metadata. Can now annotate function args.

● Dead_on_unwind, writable
○ Allow more memcpy optimization

● Getelementptr nuw
○ Let LLVM know the array index is not negative
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Attributes motivated by Rust needs

● Allocator attributes
○ Teach LLVM about Rust's custom allocation functions

● Range attributes
○ Previously only available as load metadata. Can now annotate function args.

● Dead_on_unwind, writable
○ Allow more memcpy optimization

● Getelementptr nuw
○ Let LLVM know the array index is not negative

● All of these benefit C++ and other languages as well
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Correctness
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Rust semantics based on LLVM semantics
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● Rust can only pick semantics that are supported by LLVM
○ ...and have good optimization support
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Historical issues

● Side-effect-free infinite loop UB
○ Opt-in via mustprogress
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Historical issues

● Side-effect-free infinite loop UB
○ Opt-in via mustprogress

● noalias (restrict C)
○ restrict rarely used in C, ubiquitous in Rust
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Call ABI

● How values are passed/returned
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● C ABI handling must be implemented in each frontend

○ LLVM type system not enough for ABI handling
○ Must reimplement ~10k lines of clang TargetInfo
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Call ABI

● How values are passed/returned
● C ABI handling must be implemented in each frontend

○ LLVM type system not enough for ABI handling
○ Must reimplement ~10k lines of clang TargetInfo

● LLVM confuses "available instruction sets" and "call ABI"
○ Target features like +avx affect both
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Off the beaten path

● Rust is currently adding f16 and f128 types
● Beyond X86/ARM: Lots of bugs
● Backend often "wrong by default" instead of "correct by default"
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Rust ❤ LLVM



Thank You!
Questions?
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