
Rust ❤ LLVM
Nikita Popov

LLVM Developers Meeting 2024



Rust: Memory safe systems programming language

2



Rust: Memory safe systems programming language

3

safe



Rust: Memory safe systems programming language

4

safe fast



5

https://www.chromium.org/Home/chromium-security/memory-safety/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

70% of security bugs
are memory safety issues



Rust: Memory safe systems programming language

6

safe fast

rustc LLVM



Governance

7

T-compiler WG-LLVM

T-lang T-opsem

Upstream LLVM

T = Team, WG = Working Group



Governance

8

T-compiler WG-LLVM

T-lang T-opsem

Upstream LLVM

Team lead

Lead maintainer

T = Team, WG = Working Group



Governance

9

T-compiler WG-LLVM

T-lang T-opsem

Upstream LLVM

Team lead

Lead maintainer

I work here

T = Team, WG = Working Group



Supported LLVM versions

● Current LLVM main (20-dev)
● Current LLVM release (19)

○ Default, used by official rustup binaries
● One or two older LLVM releases (18, 17)

○ For distros

10



Supported LLVM versions

● Current LLVM main (20-dev)
● Current LLVM release (19)

○ Default, used by official rustup binaries
● One or two older LLVM releases (18, 17)

○ For distros

● LLVM fork for backport management only, no Rust-specific patches

11



Rust Lowering

12

Rust MIR LLVM backend



Rust Lowering

13

Rust MIR LLVM backend

Cranelift backend

Default, production use

Fast unoptimized builds



Rust Lowering

14

Rust MIR LLVM backend

Cranelift backend

GCC backend

Default, production use

Fast unoptimized builds

Exotic targets



Rust Lowering

15

Rust MIR

MIR 
optimizations

LLVM backend

Cranelift backend

GCC backend

Default, production use

Fast unoptimized builds

Exotic targets



Challenges

16



Challenges

17

Correctness

Performance

Compilation Time



Challenges

18

Correctness

Performance

Compilation Time

More important

Less important



Challenges

19

Correctness

Performance

Compilation Time

More important

Less important

Less pressing

More pressing



Compilation Time

20



Compilation Time

21

● Compilation unit is crate (vs file in C/C++)
○ Mitigation: CGU partitioning + Crate-local ThinLTO



Compilation Time

22

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

Whole crate

● Compilation unit is crate (vs file in C/C++)
○ Mitigation: CGU partitioning + Crate-local ThinLTO



CGU partitioning and Crate-Local ThinLTO

23

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

CGU 1

CGU 2

...

Pre-Link
Optimization

Cross-Module 
Analysis

Post-Link Optimization + 
Code generation



Compilation Time

● Compilation unit is crate (vs file in C/C++)
○ Mitigation: CGU partitioning + Crate-local ThinLTO

● Generics produce huge amounts of IR
○ Mitigation: MIR optimization, share-generics, polymorphization(?)

24



Monomorphization

25

foo<T> Monomorphization foo<i32>

foo<i8>

foo<u32>



Monomorphization

26

foo<T> Monomorphization foo<i32>

foo<i8>

foo<u32>

LLVM optimizations

LLVM optimizations

LLVM optimizations



Monomorphization

27

foo<T> Monomorphization foo<i32>

foo<i8>

foo<u32>
MIR 

optimizations

LLVM optimizations

LLVM optimizations

LLVM optimizations



Compilation Time

● Compilation unit is crate (vs file in C/C++)
○ Mitigation: CGU partitioning + Crate-local ThinLTO

● Generics produce huge amounts of IR
○ Mitigation: MIR optimization, share-generics, polymorphization(?)

● LLVM is slow
○ Mitigation: Make LLVM faster

28



LLVM 10 upgrade

29

https://perf.rust-lang.org/compare.html?start=c5840f9d252c2f5cc16698dbf385a29c5de3ca07&end=97588aeda139309169b11654fc809e1ac5fd246c



LLVM compilation time tracker

30

https://llvm-compile-time-tracker.com/graphs.php?startDate=2021-02-04&interval=100&relative=on&bench=geomean&width=800



LLVM 19 upgrade

31

https://perf.rust-lang.org/compare.html?start=e552c168c72c95dc28950a9aae8ed7030199aa0d&end=0b5eb7ba7bd796fb39c8bb6acd9ef6c140f28b65



Performance

32



Specific optimization problems

● Bounds check elimination
○ Usually works, but not reliable
○ Good: Constant bounds, straight-line code. Bad: Checks in loops.

33



Specific optimization problems

● Bounds check elimination
○ Usually works, but not reliable
○ Good: Constant bounds, straight-line code. Bad: Checks in loops.

● memcpy elimination
○ Rust has no NRVO -> many memcpys

34



Specific optimization problems

● Bounds check elimination
○ Usually works, but not reliable
○ Good: Constant bounds, straight-line code. Bad: Checks in loops.

● memcpy elimination
○ Rust has no NRVO -> many memcpys

● Inclusive ranges
○ 0..n often optimized much better than 0..=n
○ Conditional increment to handle n == u32::MAX correctly

35



Performance: Telling LLVM about Rust semantics

● Rust has many very strong guarantees
● Conveyed to LLVM using attributes, metadata and assumes

○ noalias, readonly, dereferenceable, nonnull, range, etc.

36



Performance: Telling LLVM about Rust semantics

● Rust has many very strong guarantees
● Conveyed to LLVM using attributes, metadata and assumes

○ noalias, readonly, dereferenceable, nonnull, range, etc.
● Problem: Metadata/attributes get lost. Assumes don't get lost enough.

37



Attributes motivated by Rust needs

● Allocator attributes
○ Teach LLVM about Rust's custom allocation functions

● Range attributes
○ Previously only available as load metadata. Can now annotate function args.

● Dead_on_unwind, writable
○ Allow more memcpy optimization

● Getelementptr nuw
○ Let LLVM know the array index is not negative

38



Attributes motivated by Rust needs

● Allocator attributes
○ Teach LLVM about Rust's custom allocation functions

● Range attributes
○ Previously only available as load metadata. Can now annotate function args.

● Dead_on_unwind, writable
○ Allow more memcpy optimization

● Getelementptr nuw
○ Let LLVM know the array index is not negative

● All of these benefit C++ and other languages as well

39



Correctness

40



Rust semantics based on LLVM semantics

41

Rust

LLVM



Rust semantics based on LLVM semantics

42

Rust

LLVM

● Rust can only pick semantics that are supported by LLVM
○ ...and have good optimization support



Rust semantics based on LLVM semantics

43

Rust

LLVM

● Rust can only pick semantics that are supported by LLVM
○ ...and have good optimization support

Unspecified
semanticsUndecided

semantics



Rust semantics based on LLVM semantics

44

Rust

LLVM

● Rust can only pick semantics that are supported by LLVM
○ ...and have good optimization support

Known 
miscompiles

Unspecified
semanticsUndecided

semantics



Rust semantics based on LLVM semantics

45

Rust

LLVM

● Rust can only pick semantics that are supported by LLVM
○ ...and have good optimization support

Known 
miscompiles

Unspecified
semanticsUndecided

semantics



Historical issues

● Side-effect-free infinite loop UB
○ Opt-in via mustprogress

46



Historical issues

● Side-effect-free infinite loop UB
○ Opt-in via mustprogress

● noalias (restrict C)
○ restrict rarely used in C, ubiquitous in Rust

47



Call ABI

● How values are passed/returned

48



Call ABI

● How values are passed/returned
● C ABI handling must be implemented in each frontend

○ LLVM type system not enough for ABI handling
○ Must reimplement ~10k lines of clang TargetInfo

49



Call ABI

● How values are passed/returned
● C ABI handling must be implemented in each frontend

○ LLVM type system not enough for ABI handling
○ Must reimplement ~10k lines of clang TargetInfo

● LLVM confuses "available instruction sets" and "call ABI"
○ Target features like +avx affect both

50



Off the beaten path

● Rust is currently adding f16 and f128 types
● Beyond X86/ARM: Lots of bugs
● Backend often "wrong by default" instead of "correct by default"

51



Rust ❤ LLVM



Thank You!
Questions?



54


