
Vector-DDG (Vector Data

Dependence Graph) for Better

Visualization and Verification of

Vectorized LLVM-IR

AMD Compilers Team

Sumukh J Bharadwaj, Aloor Raghesh, Roomman Israili,

Karthik Kotikalapudi, Ayushman Singh, Meena Jain

2 |

[Public]

Agenda

VECTOR-DDG: VISUALIZER

VECTOR-DDG: VERIFIER

SOUNDNESS AND CORRECTNESS

FUTURE WORK

INTRODUCTION

COPYRIGHTS

3 |

[Public]

Introduction: Data Dependence Graph and Vectorization

• Vectorization brings big performance uplifts for various applications

• Presence of complicated data flow makes it difficult to comprehend the vectorized LLVM IR

• We propose Vector-DDG to address the above challenge

o Extension to the state-of-the art Data Dependence Graph (DDG)

o Visualization - helps developing insights to improve the quality of the vector code

o Verification - to establish the correctness of the vector code

o This verifier can also be used as a pass which scalarizes the code vectorized by SLP vectorizers

4 |

[Public]

VectorDDG: Visualizer – An example

• The LLVM IR of the example being considered

define i32 @hadd(i32* %a, i32* %b) {
entry:

%0 = bitcast ptr %a to ptr
%1 = load <2 x i32>, ptr %0, align 4
%2 = getelementptr inbounds i32, ptr %a, i32 2
%3 = load <2 x i32>, ptr %2, align 4
%4 = shufflevector <2 x i32> %1, <2 x i32> %3, <2 x i32> <i32 0, i32 2>
%5 = shufflevector <2 x i32> %1, <2 x i32> %3, <2 x i32> <i32 1, i32 3>
%6 = add <2 x i32> %4, %5
%7 = extractelement <2 x i32> %6, i32 0
store i32 %7, ptr %b, align 4
%8 = getelementptr i32, ptr %b, i32 1
%9 = bitcast ptr %8 to ptr
store <2 x i32> %6, ptr %9, align 4
ret i32 0

}

5 |

[Public]

VectorDDG: Visualizer – An example

• Dependence graph without VectorDDG

6 |

[Public]

VectorDDG: Visualizer – An example

• Dependence graph with VectorDDG

7 |

[Public]

VectorDDG: Verifier – Scalarizing the Vector Lanes

• Split a vector node into multiple nodes corresponding to each lane

• Equivalent to scalarization of the Vector DDG

Original VectorDDG Scalarized DDG with nodes for each lane

8 |

[Public]

VectorDDG: Verifier - Scalarizing the Vector Lanes

• Precise memory dependence edges are added correspondingly

Indication of precise memory dependence

9 |

[Public]

VectorDDG: Verifier

• Nodes: scalar instructions or vector lanes

• Edges: data or memory dependence edges

• Checks if there are same data and memory dependence in ScalarDDG and

Scalarized VectorDDG

• Assumptions
• Instruction set of the ScalarDDG is the same as the scalarized VectorDDG

• SLP Vectorizer does not perform any non-trivial transformations

A Vector-DDG is equivalent to a Scalar-DDG if and only if for each path in

Scalar-DDG there exists a unique path in the Scalarized Vector-DDG

10 |

[Public]

VectorDDG: Verifier - Algorithm

• We traverse both DDGs in topological order and perform a level-by-level

comparison

• We first compare the external values (parameters, constants) of both the DDGs

• For the corresponding levels, we try to match the nodes by comparing their
parents

• If the match fails at any point, we conclude that the DDGs are non-equivalent

11 |

[Public]

VectorDDG: Verifier - Example

define void fscalar(ptr %P0, ptr %P1, ptr %P2, ptr3) {

%L0 = load i32, ptr %P0

%L1 = load i32, ptr %P1

%L2 = load i32, ptr %P2

%L3 = load i32, ptr %P3

%A0 = add i32 %L0, %L2

%A1 = add i32 %L1, %L3

}

define void fvec(ptr %P0, ptr %P1, ptr %P2, ptr %P3) {

%VL0 = load <2 x i32> ptr %P0

%VL2 = load <2 x i32> ptr %P2

%VA = add <2 x i32> %VL0, %VL2

}

ScalarDDG representation

VectorDDG representation

12 |

[Public]

Soundness

• Soundness could be defined as

• Equivalent → Actually equivalent

• Not-equivalent → it can be actually equivalent or not-equivalent

• The verification procedure is sound in nature

• Currently, in unhandled cases or scenarios where it is difficult to judge, we return the result as

non-equivalent

• Therefore, the verifier may label equivalent programs as non-equivalent

13 |

[Public]

Future Work

• Propose this as an RFC to llvm community

• Propose this as a Google Summer Of Code project to enable further development

• Implement techniques to have visualization of subgraphs for dense Vector-DDGs

• Extend the support to Loop Vectorizer

• Implementation: Work in progress

14 |

[Public]

Copyright and disclaimer
 ©2024 Advanced Micro Devices, Inc. All rights reserved.

 AMD, the AMD Arrow logo, [insert all other AMD trademarks used in the material IN ALPHABETICAL ORDER here per AMD's Guidelines on Using Trademark

Notice and Attribution] and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for

identification purposes only and may be trademarks of their respective companies.

 The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap

changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD

assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes

from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

 THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND

ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM

THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Appendix

17 |

[Public]

VectorDDG: Visualizer – Node representation

• The nodes of the original graph bearing

vector instructions are modified to

represent the lanes associated with the

vector being dealt with and will thus be

recognized as an atomic node in itself.

• Connections to vector lanes are depicted

as edges to the lane nodes created which

helps us demonstrate the data

dependence in vector instructions which

would give us a clear picture of lane flow

and movement
Node representation for vector instructions

18 |

[Public]

VectorDDG: Visualizer – Handling Special Instructions

• Shuffle vector instruction: This instruction requires the mask input to be identified after obtaining the two

vector operands in order to divert the lanes in a specified manner.

• The value of the index indicated by the mask must be extracted from the two vectors and the edges have

to be drawn correspondingly.

Shufflevector representation

19 |

[Public]

VectorDDG: Visualizer – Handling Special Instructions

• Extract element instruction: This instruction requires the index from the operand to be identified and the

edge from the particular lane of the node needs to directed towards the scalar node.

• Insert element instruction: This instruction requires the index from the operand to be identified, thereby

generating the remaining edges from the source node and the required element to be inserted from either

a fixed scalar value or from the result of another operation

Extract element representation Insert element representation

20 |

[Public]

Problem with non-trivial transformations

• Assume that in the scalar code we have the following

%0 = add 10, 10

%1 = mul %0, 10

• These are not vectorizable instructions

• Assume that for some reason an earlier pass did not fold %0 into 20

• Consider the vectorized code where it was folded to 20

%1 = mul 20, 10

• This will be again folded to 200 and the above two instructions will be missing in the vectorized code

• This violates our notion of a one-to-one comparison for the same operation performed

21 |

[Public]

VectorDDG: Verifier - Algorithm

1. M1: ScalarNodeToIndegreeMap = findIndegreeForScalarDDG()

2. M2: VectorNodeToIndegreeMap = findIndegreeForVectorDDG()

3. CurScalarFrontier = {Scalar nodes with indegree of 0}

4. NextScalarFrontier = {}

5. CurVectorFrontier = {Vector nodes with indegree of 0}

6. NextVectorFrontier = {}

7. while(!CurScalarFrontier.Empty() && !CurVectorFrontier.isEmpty()){

8. if (!match(CurScalarFrontier, NextScalarFrontier, CurVectorFrontier, NextVectorFrontier))

9. return false

10. CurScalarFrontier = NextScalarFrontier

11. NextScalarFrontier = {}

12. CurVectorFrontier = NextVectorFrontier

13. NextVectorFrontier = {}

14. }

15. If (CurScalarFrontier.isEmpty() && CurVectorFrontier.isEmpty())

16. return true

17. return false

22 |

[Public]

VectorDDG: Verifier - Algorithm

1. match (CurScalarFrontier, NextScalarFrontier, CurVectorFrontier, NextVectorFrontier){

2. bypassSpecials(CurScalarFrontier, M1)

3. bypassSpecials(CurVectorFrontier, M2)

4. for VectorNode in CurVectorFrontier:

5. for ScalarNode in CurScalarFrontier:

6. if (sameParents(VectorNode, ScalarNode)) {

7. for each child of VectorNode:

8. M2[child] --

9. if (M2[child] == 0)

10. NextVectorFrontier.insert(child)

11. for each child of ScalarNode:

12. M1[child] --

13. if (M1[child] == 0)

14. NextScalarFrontier.insert(child)

15. break

16. }

17. If (CurScalarFrontier.isEmpty() && CurVectorFrontier.isEmpty())

18. return true

19. return false

20. }

23 |

[Public]

VectorDDG: Verifier – Handling Special instructions

Shuffle bypass and rewire

• Special instructions that modify the lane ordering or bridge scalar and vector instructions can be

mapped by taking only the flow in consideration while bypassing the instructions

• This includes the ShuffleVector, InsertElement and extractelement instructions

24 |

[Public]

VectorDDG: Verifier – Preprocessing GEPs

• GEPs are special instructions that have no direct correspondence with the scalar counterpart, nor can they

be ignored and bypassed due to their nature

• GEPs are preprocessed by modifications to scalar components and verifying the equivalence in the

process

• For each corresponding lane node in a vector load we find the matching GEPs in this scenario

• a) If the particular GEP has other uses then duplicate the GEP and update the parents of the use

• b) If the GEPs parent is another GEP, merge the parent recursively while duplicating it if other uses are found

25 |

[Public]

VectorDDG: Verifier – Preprocessing GEPs

• In the merged nodes of ScalarDDG , we store the corresponding vector lane to make the matching simpler

• This process also performs partial verification by making rejections stating the nonequivalence of the

vectorization when the comparison fails midway

• Assumption: This is a maximum of one store and one load for the GEP instruction being matched

26 |

[Public]

VectorDDG: Verifier – Preprocessing GEPs Example

define void @gep(ptr %P) {
entry:

%L0 = load i32, ptr %P
%GEP1 = getelementptr i32, ptr %P, i32 1
%L1 = load i32, ptr %GEP1
%GEP2 = getelementptr i32, ptr %P, i32 2
%L2 = load i32, ptr %GEP2
%GEP3 = getelementptr i32, ptr %GEP2, i32 1
%L2 = load i32, ptr %GEP3
ret void

}

ScalarDDG with IR:

27 |

[Public]

VectorDDG: Verifier – Preprocessing GEPs Example

GEP handling and merging nodes for comparison

28 |

[Public]

VectorDDG: Verifier – Preprocessing GEPs Example

define void @gep.vec(ptr %P){
entry:

%0 = load <4 x i32>, ptr %P
}

Final ScalarDDG after GEP preprocessing

Corresponding VectorDDG

29 |

[Public]

Proof by induction

• In each step, The algorithm proceeds by trying to find a matching frontier in Scalar-
DDG for a frontier in Vector-DDG

• Note that we define frontier in topological order, not the usual BFS frontier

• The proof is by induction where we assume that all the parent frontiers in topological
order are matched

• Now to match a vector frontier to a scalar one, we need to find matching nodes
between them

• A node in vector frontier is matching to a node in scalar frontier if we can find uniquely
matching parents for them

• If we cannot find we say that they are not equivalent

	Slide 1: Vector-DDG (Vector Data Dependence Graph) for Better Visualization and Verification of Vectorized LLVM-IR
	Slide 2: Agenda
	Slide 3: Introduction: Data Dependence Graph and Vectorization
	Slide 4: VectorDDG: Visualizer – An example
	Slide 5: VectorDDG: Visualizer – An example
	Slide 6: VectorDDG: Visualizer – An example
	Slide 7: VectorDDG: Verifier – Scalarizing the Vector Lanes
	Slide 8: VectorDDG: Verifier - Scalarizing the Vector Lanes
	Slide 9: VectorDDG: Verifier
	Slide 10: VectorDDG: Verifier - Algorithm
	Slide 11: VectorDDG: Verifier - Example
	Slide 12: Soundness
	Slide 13: Future Work
	Slide 14: Copyright and disclaimer
	Slide 15
	Slide 16: Appendix
	Slide 17: VectorDDG: Visualizer – Node representation
	Slide 18: VectorDDG: Visualizer – Handling Special Instructions
	Slide 19: VectorDDG: Visualizer – Handling Special Instructions
	Slide 20: Problem with non-trivial transformations
	Slide 21: VectorDDG: Verifier - Algorithm
	Slide 22: VectorDDG: Verifier - Algorithm
	Slide 23: VectorDDG: Verifier – Handling Special instructions
	Slide 24: VectorDDG: Verifier – Preprocessing GEPs
	Slide 25: VectorDDG: Verifier – Preprocessing GEPs
	Slide 26: VectorDDG: Verifier – Preprocessing GEPs Example
	Slide 27: VectorDDG: Verifier – Preprocessing GEPs Example
	Slide 28: VectorDDG: Verifier – Preprocessing GEPs Example
	Slide 29: Proof by induction

