
Accelerate with Xeon 1

Speeding up Intel®
Gaudi® deep-
learning accelerators
using an MLIR-based
compiler

Jayaram Bobba, Tzachi Cohen, Dibyendu Das,

Sergei Grechanik, Dafna Mordechai

Intel/Habana Labs

2

Intel Gaudi 3 AI accelerator
Spec and Block Diagram

Feature/Product Intel® Gaudi® 3 Accelerator

BF16 Matrix TFLOPs 1835

FP8 Matrix TFLOPs 1835

BF16 Vector TFLOPs 28.7

MME Units 8

TPC Units 64

HBM Capacity 128 GB

HBM Bandwidth 3.67 TB/s

On-die SRAM Capacity 96 MB

On-die SRAM Bandwidth

RD+WR (L2 Cache)
19.2 TB/s

Networking 1200 GB/s bidirectional

Host Interface PCIe Gen5 x16

Host Interface Peak BW 128 GB/s bidirectional

Media Engine
Rotator + 14 Decoders

(HEVC, H.264, JPEG, VP9)

MME

x
8

P
C

Ie
 G

e
n

5
M

e
d

ia
 E

n
g

in
e

MME

MME MME

MME MME

MME MME

48MB SRAM

16 TPCs16 TPCs

16 TPCs16 TPCs

48MB SRAM

12
x

 2
0

0
 G

b
E

HBM PHY HBM PHY

HBM PHY HBM PHY

HBM PHYHBM PHY

HBM PHYHBM PHY

12
x

 2
0

0
 G

b
E

M
e

d
ia

 E
n

g
in

e

x
8

 P
C

Ie
 G

e
n

5

3

256 x 256
MME

256 input elements

256 input
elements

Vector: 256B SIMD Scalar

Register File / VLM

Store Load

HBM/L3$/L2$

TPC

AGU AGU

Matrix Multiplication
and Vector Engines

Matrix Multiplication Engine (MME): designed for AI efficiency

Configurable, not programmable

Each MME is a large output stationary systolic array

▪ 256x256 MAC structure w/ FP32 accumulators

▪ 64k MACs/cycle for BF16 and FP8

Large systolic array reduces intra-chip data movement, increasing efficiency

Internal pipeline to maximize compute throughput

Tensor Processing Core (TPC):
256B-wide SIMD Vector Processor

Programmable: C enhanced with TPC intrinsics

VLIW with 4 separate pipeline slots: Vector, Scalar, Load & Store

Integrated Address Generation Unit for HW-accelerated address generation

Supports main 1/2/4-Byte datatypes: Floating Point and Integer

4

Integrates the main Gen AI frameworks used today

Supports FP16/BF16 → FP8 quantization

Layered View of Intel® Gaudi® Software Suite

DeepSpeed
Integration

LLM serving
integration

Quantization
integration

Quantization Toolkit

PyTorch integration

Graph Compiler

Collective
Communication

Library (CCL)
TPC Fuser

Custom
user

TPC kernels

Optimized
TPC kernel

library

User-mode driver/run-time environment

Compute Driver Network Driver

Proprietary Ecosytem integration Plugin

Intel Gaudi Software Suite

Main proprietary SW layers

Graph Compiler: Handles all engine dependency and scheduling

logic

Matrix operations: Configuring the MME

TPC kernels: All non-Matrix operations

Collective Communication Library (CCL)

Several sources for TPC Kernels

Gaudi optimized TPC kernel library

Custom user kernels

MLIR-based fused kernels: generated during graph compilation

5

Graph Compilation Flow

Synapse Dataflow Graph

Synapse Graph
Compiler (GC)

tpc-
clang

tpc-
clang

fused_kernel.o (JIT)

Sc
he

du
le

 k
er

ne
ls

 o
n

TP
C

Pytorch-
Synapse Bridge

PyT code

Pre-Compiled binary

MLIR
Fuser

Custom Kernel in
TPC-C language

TPC Sub-graph

Perflib

custom-
kernel.o

6

Fuser Compilation Flow (1/2)

SynIR MLIR Importer MLIR IR

Clustering

Clustered IR

~1000s of ops

10s of ops per cluster

1 cluster ~ 1 kernel

Reshape Propagation,
Cast Optimizations

Staged Reductions etc.

Pre-Fusion IR
Primitive ops – elementwise, broadcast, reduction.
Complex ops like norms, softmax, dropout broken down
into primitive ops.

Custom MLIR Dialects:
tpckernel – op
syn_rt – graph

Custom MLIR Dialects:
syn dialect

7

Operator Fusion

Create ‘Loop’ Clusters
subject to dimension ordering
constraints

Generate loops that operate on
scalar values

8

Fusion Search Space
Exploration

- Beam Creation: Variants dictated by scratch-
pad allocations, register pressure, compute vs
bandwidth tradeoffs etc.
- Beam Pruning: Cost model and heuristics to
increase beam diversity

Beam Search

9

Op and Loop
Fusion

Loop-based IR

Loop Optimizations
Auto-Vectorization,
Unroll, Interchange,
Auto-parallelization,

LICM etc.

Parallelized and
Vectorized IR

TPC ISA
Optimizations

Optimized
LLVM IR

TPC Clang
LLVM Backend

TPC ASM

Fuser Compilation Flow (2/2)

Mostly upstream
MLIR Dialects/Types:

Affine, memref, arith, math

Parallelized

Vectorized

10

Loop Optimizations

Leverages many upstream affine optimizations and utilities

- Loop Fusion: mlir::affine::fuseLoops

- Vectorization: SuperVectorize.cpp

- Unroll and Jam: loopUnrollJamByFactor

- Affine Parallelization to distribute iterations over TPCs

Upstreamed enhancements whenever feasible.
https://github.com/llvm/llvm-project/commit/14d0735d3453fb6403da916d7aee6a9f25af4147
https://github.com/llvm/llvm-project/commit/d80b04ab0015b218b613f8fe59506d45739817b8
https://github.com/llvm/llvm-project/commit/7ab14b8886d9ddaca1f8fc8a34ef8f03af208f26 etc.

https://github.com/llvm/llvm-project/blob/3484ed9325f30b56717a1b939af4c58dd07848e0/mlir/lib/Dialect/Affine/Utils/LoopFusionUtils.cpp#L426
https://github.com/llvm/llvm-project/blob/main/mlir/lib/Dialect/Affine/Transforms/SuperVectorize.cpp
https://github.com/llvm/llvm-project/blob/main/mlir/include/mlir/Dialect/Affine/LoopUtils.h#L77
https://github.com/llvm/llvm-project/commit/14d0735d3453fb6403da916d7aee6a9f25af4147
https://github.com/llvm/llvm-project/commit/d80b04ab0015b218b613f8fe59506d45739817b8
https://github.com/llvm/llvm-project/commit/7ab14b8886d9ddaca1f8fc8a34ef8f03af208f26

11

Extracting Memory Access Information

Kernel Iteration Space

Affine maps extracted through analysis of affine memory operations

Cache/SRAM

Allows Graph Compiler to automatically slice kernels
- MME/TPC Execution Overlap
- Pass data through SRAM/Local Caches
‘flash-attention’-like schedulesSlice 2Slice 1

Cache/SRAM

Input Tensors
Output Tensor

12

Fuser Performance Improvements

-20
-10

0
10

20
30
40
50
60

T
5

-L
A

R
G

E
-H

F
…

C
lip

-R
o

B
E

R
T

a
…

F
a

lc
o

n
-1

8
0

B
-…

Y
O

L
O

v
5

T
5

-L
A

R
G

E
-H

F
V

iT
-H

F
L

L
a

M
A

2
-7

B
-…

M
IX

T
R

A
L

-…
F

L
A

N
-T

5
-…

L
L

a
M

A
2

-7
B

-…
G

P
T

J
-C

L
M

-H
F

F
L

A
N

-T
5

-…
M

P
T

-1
B

L
L

a
M

A
-V

2
-…

C
lip

-R
o

B
E

R
T

a
…

L
L

a
M

A
-V

2
-…

A
L

B
E

R
T

-X
X

L
-…

T
ra

n
sf

o
rm

e
r

8
K

S
w

in
-T

-H
F

B
E

R
T

-L
-N

V
 F

T
…

T
ra

n
sf

o
rm

e
r

16
K

B
e

rt
-B

a
s

e
-H

F
D

is
ti

lB
E

R
T

-H
F

B
R

ID
G

E
T

O
W

E
…

G
P

T
2

-X
L

-H
F

R
o

B
E

R
T

a
…

R
o

B
E

R
T

a
…

B
E

R
T

-L
-H

F
 F

T
B

E
R

T
-L

-N
V

 F
T

%
 S

p
e

e
d

u
p

End-to-end model execution

1.3X Avg Perf Improvement at model level

-20

0

20

40

60

80

100

120

140

160

1 6 11 16 2
1

2
6 3
1

3
6 4
1

4
6 5
1

5
6 6
1

6
6 7
1

7
6 8
1

8
6 9
1

9
6

%
 S

p
e

e
d

u
p

Model Trace Number

Device execution times

1.5X Avg Perf Improvement in device execution time

Measured on Intel Gaudi2

13

Conclusion

• Deployed as part of Gaudi Synapse SW stack

• Delivers significant performance improvements

• Works in-tandem with a Graph Compiler to optimize execution across the entire accelerator

• Leverages upstream MLIR dialects like Affine, SCF, Arith, Math along with in-house dialects

https://developer.habana.ai/

15

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at
www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all
publicly available updates. See backup for configuration details. No product or component can be
absolutely secure.

Intel technologies may require enabled hardware, software or service activation.

Availability of accelerators varies depending on SKU. Please contact your Intel sales representative for
more information.

Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

http://www.intel.com/PerformanceIndex

	Gaudi3 intro, features, architecture
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Graph Compilation Flow
	Slide 6: Fuser Compilation Flow (1/2)
	Slide 7: Operator Fusion
	Slide 8: Fusion Search Space Exploration
	Slide 9: Fuser Compilation Flow (2/2)
	Slide 10: Loop Optimizations
	Slide 11: Extracting Memory Access Information
	Slide 12: Fuser Performance Improvements
	Slide 13: Conclusion
	Slide 14
	Slide 15: Notices & Disclaimers

