
Instrumenting MLIR Based ML Compilers for GPU

Performance Analysis and Optimization

Corbin Robeck, AMD

ML Compilers/AMD Research
LLVM Developers’ Meeting – October 2024

[Public]

▪

▪

▪

▪

▪

▪

▪

▪

[Public]

▪

▪

▪

→ →

▪

▪

▪

▪

[Public]

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

[Public]

▪

▪

▪

▪

▪

▪

▪

▪

https://github.com/triton-lang/triton/blob/main/python/tutorials/01-vector-add.py

[Public]

▪

▪

▪

▪

▪

[Public]

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

define amdgpu_kernel void @add_kernelPv(ptr addrspace(1) nocapture
readonly %0, ptr addrspace(1) nocapture readonly %1, ptr
addrspace(1) nocapture writeonly %2, i32 %3, ptr addrspace(1) %4){
 %5 = tail call i32 @llvm.amdgcn.workgroup.id.x(), !dbg !66
 %6 = shl i32 %5, 10, !dbg !67
 %7 = tail call i32 @llvm.amdgcn.workitem.id.x(), !dbg !68
 %8 = shl i32 %7, 2, !dbg !68
 %9 = and i32 %8, 1020, !dbg !68
 %10 = or disjoint i32 %9, %6, !dbg !69
 %11 = icmp slt i32 %10, %3, !dbg !70
 br i1 %11, label %.critedge, label %.critedge2, !dbg !71

define amdgpu_kernel void @add_kernel(ptr addrspace(1) nocapture
readonly %0, ptr addrspace(1) nocapture readonly %1, ptr
addrspace(1) nocapture writeonly %2, i32 %3){
 %5 = tail call i32 @llvm.amdgcn.workgroup.id.x(), !dbg !11
 %6 = shl i32 %5, 10, !dbg !12
 %7 = tail call i32 @llvm.amdgcn.workitem.id.x(), !dbg !13
 %8 = shl i32 %7, 2, !dbg !13
 %9 = and i32 %8, 1020, !dbg !13
 %10 = or disjoint i32 %9, %6, !dbg !14
 %11 = icmp slt i32 %10, %3, !dbg !15
 br i1 %11, label %.critedge, label %.critedge2, !dbg !16

[Public]

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

__attribute__((used)) __device__ void
memoryTrace(void *addressPtr, uint32_t LocationId, void *hostBufferPtr) {
if(isSharedMemPtr(addressPtr))
 return;
 uint64_t address = reinterpret_cast<uint64_t>(addressPtr);
 // Mask of the active threads in the wave
 int activeThreadMask = __builtin_amdgcn_read_exec();
 // Find first active thread in the wave by finding the position of the least
 // significant bit set to 1 in the activeThreadMask
 const int firstActiveLane = __ffsll(activeThreadMask) - 1;
 uint64_t addrArray[WaveFrontSize];
 for (int i = 0; i < WaveFrontSize; i++) {
 addrArray[i] = __shfl(address, i, WaveFrontSize);
 }
 uint32_t Lane =
 __builtin_amdgcn_mbcnt_hi(~0u, __builtin_amdgcn_mbcnt_lo(~0u, 0u));

 if (Lane == firstActiveLane) {
 uint64_t MemTraceData = reinterpret_cast<MemTraceData_t>(hostBufferPtr);
 unsigned int hw_id = 0;
 uint64_t Time = 0;
 unsigned int xcc_id = 0;
 Time = __builtin_amdgcn_s_memrealtime();
 asm volatile("s_getreg_b32 %0, hwreg(HW_REG_HW_ID)" : "=s"(hw_id));
 MemTraceData.Cycle = Time;
 MemTraceData.LocationId = LocationId;
 MemTraceData.WaveId = hw_id & 0xf;
 MemTraceData.SIMD = (hw_id & 0x30) >> 4;
 MemTraceData.CU = (hw_id & 0xf00) >> 8;
 MemTraceData.SE = (hw_id & 0xe000) >> 13;
 MemTraceData.XCD = xcc_id;
 for (int i = 0; i < WaveFrontSize; i++)
 MemTraceData.addrArray[i] = addrArray[i];
 }

}

[Public]

https://github.com/vllm-project/vllm/blob/main/examples/offline_inference.py

[Public]

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

https://github.com/triton-lang/triton/pull/3953
https://github.com/iree-org/iree/pull/18347
https://github.com/CRobeck/instrument-amdgpu-kernels

[Public]

Copyright and disclaimer
©2024 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for

identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap

changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS flashes,

firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no

obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to

time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND

ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE

USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

[Public]

	Instrumenting MLIR Based ML Compilers for GPU Performance Analysis and Optimization

	Slide 1
	Slide 2: Outline
	Slide 3: Background and Motivation
	Slide 4: Challenges Instrumenting MLIR-GPU Frameworks
	Slide 5: MLIR Based ML Compiler Framework Overview
	Slide 6: Adding Instrumentation Infrastructure to MLIR Pass Pipeline
	Slide 7: Implementation Details
	Slide 8: Triton Memory Trace Example
	Slide 9: Memory Trace Example Output
	Slide 10: Current Status and Future Development Roadmap
	Slide 11: Copyright and disclaimer
	Slide 12

