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https://github.com/triton-lang/triton/blob/main/python/tutorials/01-vector-add.py
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define amdgpu_kernel void @add_kernelPv(ptr addrspace(1) nocapture 
readonly %0, ptr addrspace(1) nocapture readonly %1, ptr 
addrspace(1) nocapture writeonly %2, i32 %3, ptr addrspace(1) %4){
 %5 = tail call i32 @llvm.amdgcn.workgroup.id.x(), !dbg !66
 %6 = shl i32 %5, 10, !dbg !67
 %7 = tail call i32 @llvm.amdgcn.workitem.id.x(), !dbg !68
 %8 = shl i32 %7, 2, !dbg !68
 %9 = and i32 %8, 1020, !dbg !68
 %10 = or disjoint i32 %9, %6, !dbg !69
 %11 = icmp slt i32 %10, %3, !dbg !70
 br i1 %11, label %.critedge, label %.critedge2, !dbg !71

define amdgpu_kernel void @add_kernel(ptr addrspace(1) nocapture 
readonly %0, ptr addrspace(1) nocapture readonly %1, ptr 
addrspace(1) nocapture writeonly %2, i32 %3){
 %5 = tail call i32 @llvm.amdgcn.workgroup.id.x(), !dbg !11
 %6 = shl i32 %5, 10, !dbg !12
 %7 = tail call i32 @llvm.amdgcn.workitem.id.x(), !dbg !13
 %8 = shl i32 %7, 2, !dbg !13
 %9 = and i32 %8, 1020, !dbg !13
 %10 = or disjoint i32 %9, %6, !dbg !14
 %11 = icmp slt i32 %10, %3, !dbg !15
 br i1 %11, label %.critedge, label %.critedge2, !dbg !16
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__attribute__((used)) __device__ void
memoryTrace(void *addressPtr, uint32_t LocationId, void *hostBufferPtr) {
if(isSharedMemPtr(addressPtr))
 return;
 uint64_t address = reinterpret_cast<uint64_t>(addressPtr);
 // Mask of the active threads in the wave
 int activeThreadMask = __builtin_amdgcn_read_exec();
 // Find first active thread in the wave by finding the position of the least
 // significant bit set to 1 in the activeThreadMask
 const int firstActiveLane = __ffsll(activeThreadMask) - 1;
 uint64_t addrArray[WaveFrontSize];
 for (int i = 0; i < WaveFrontSize; i++) {
  addrArray[i] = __shfl(address, i, WaveFrontSize);
 }
 uint32_t Lane =
   __builtin_amdgcn_mbcnt_hi(~0u, __builtin_amdgcn_mbcnt_lo(~0u, 0u));

 if (Lane == firstActiveLane) {
    uint64_t MemTraceData = reinterpret_cast<MemTraceData_t>(hostBufferPtr);
  unsigned int hw_id = 0;
  uint64_t Time = 0;
  unsigned int xcc_id = 0;
  Time = __builtin_amdgcn_s_memrealtime();
  asm volatile("s_getreg_b32 %0, hwreg(HW_REG_HW_ID)" : "=s"(hw_id));
  MemTraceData.Cycle = Time;
  MemTraceData.LocationId = LocationId;
  MemTraceData.WaveId = hw_id & 0xf;
  MemTraceData.SIMD = (hw_id & 0x30) >> 4;
  MemTraceData.CU = (hw_id & 0xf00) >> 8;
  MemTraceData.SE = (hw_id & 0xe000) >> 13;
  MemTraceData.XCD = xcc_id;
  for (int i = 0; i < WaveFrontSize; i++)
    MemTraceData.addrArray[i] = addrArray[i];
  }

}
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https://github.com/vllm-project/vllm/blob/main/examples/offline_inference.py
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https://github.com/triton-lang/triton/pull/3953
https://github.com/iree-org/iree/pull/18347
https://github.com/CRobeck/instrument-amdgpu-kernels
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