Instrumenting MLIR Based ML Compilers for GPU
Performance Analysis and Optimization

LLVM Developers’ Meeting — October 2024

AMD ¢

together we advance_

Outline

Motivation and Background

Instrumentation Challenges on GPUs

Representative MLIR Based ML Compiler Overview (Triton)
Adding Instrumentation to MLIR Pipelines
Implementation details

Implemented Passes and Envisioned Use (ases

Triton Memory Trace Example

Existing repos, Future Development and Roadmap

2 LLVM Developers' Meeting | October 2024 AMDH

Background and Motivation

Modern machine learning compiler frameworks make heavy use of MLIR and JIT style GPU kernels
This poses a challenge from a compiler-based performance analysis and optimization perspective

Dynamic binary instrumentation tools can often be too coarse grained and do not have access to the

full set of higher-level source level information generated in the various lowering layers (multiple
MLIR IRs = LLVM IR — ISA)

Without instrumentation that is integrated into the compiler, tracing a specific kernel defect leading
to bottlenecks through the various lowering passes can be difficult and tedious

It is often useful to correlate bottleneck analysis to not just program source but also higher-level
operations and data structures (e.g., middle IR layer dot operation on a specific tensor object).

The overarching project goal is to develop a set of light-weight, customizable, open-source MLIR/LLVM
based compiler passes to perform performance analysis and optimization instrumentation for a set of
popular MLIR+GPU based ML compilers

Instrumentation in this case: injecting bottleneck and optimization analysis code into performance critical
sections of the GPU code through compiler passes at various places along the compiler pipeline

3 LLVM Developers' Meeting | October 2024 AMDH

Challenges Instrumenting MLIR-GPU Frameworks

Instrumentation on the GPU is not as straightforward as CPUs

Instrumentation data, generated on the GPU, must somehow be moved to the CPU to be available for the user (i.e,,
displayed to the terminal or written to disk)

“hostcalls”, how printf is implemented on the GPU, incur substantial runtime overheads
Example case study: a very small vLLM attention model memory trace generates 5-10 GBs of output data

GPUs have a very specific programming and memory model
Ex: Sharing data across the entire set of all GPU threads is not straightforward and very expensive

In LLVM, CPU and GPU code is compiled into separate modules that can not be linked together

Instrumentation functions are often written with Clang (HIP/CUDA) based tool chains
MLIR based tool chains have no reason to link in the Clang driver and runtime libraries
Inline ASM is usually treated as a “black box” by the compiler and can even break some optimizations

In Triton, for example, only the GPU code is compiled through MLIR/LLVM pipeline. Host (CPU) code is called through
the interpreted Python wrapper layer

Instrumenting through the MLIR/LLVM pipeline will only see the GPU kernel itself not the associated host kernel
launch API code

4 LLVM Developers' Meeting | October 2024 AMDH

)

MLIR Based ML Compiler Framework Overview

Triton Matrix Multiply

MLIR has become a popular frontend
for Python based machine learning
compilers

Triton, IREE, PyTorch

MLIR-based ML framework GPU
kernel code is intentionally hidden
from the user

The machine learning compiler makes
performance critical %tumng, tiling,
etc.) choices behind the scenes

The focus for an analysis tools depends on
the perspective
HW architects: memory access patterns
ML compiler developers: data movement and
compute overlap/pipelining opportunities, intra-
kernel timing

Users/kernel writers: memory coalescing, bank
conflicts, tuning bottlenecks

LLVM Developers' Meeting | October 2024

186
187
188
189
190
193
192
192
194
1495
196
197
198
199
200
201
202
203
204
205
206
207
208
209
21@
211
212
213
214
215
216
217
218

@triton.jit

v def matmul kernel(

Pointers to matrices

MNK GEMM

a_ptr, b_ptr, c_ptr,

Matrix dimensions
MJ NJ K’

The stride variables represent how much to increase the ptr by when moving by 1

element in a particular dimension. E.g. ~stride_am™ is how much to increase "a_ptr”

by to get the element one row down (A has M rows).
stride_am, stride_ak,
stride_bk, stride_bn,
stride cm, stride cn,

Meta-parameters

BLOCK_SIZE_M: tl.constexpr, BLOCK SIZE_N: tl.constexpr, BLOCK SIZE_K: tl.constexpr,
Many layers exist between the Python code and
the eventually generated ISA

GROUP_SIZE_M: tl.constexpr,
ACTIVATION: tl.constexpr,

"""Kernel for computing the matmul C = A x B.

A has shape (M, K), B has shape (K, N) and C has shape (N

Map program ids “pid’ to the block of C it should compy
This is done in a grouped ordering to promote L2 data
See above "L2 Cache Optimizations™ section for details
pid = tl.program_id(axis-@)

num_pid m = tl.cdiv(M, BLOCK_SIZE_M)

num pid n = tl.cdiv(N, BLOCK SIZE N)

num_pid in_group = GROUP_SIZE M * num_pid n

group_id = pid // num_pid_in_group

first_pid_m = group_id * GROUP_SIZE_M

group size m = min{num pid m - first pid m, GROUP SIZE M

pid_m = first_pid_m + (pid % group_size_m)

MLIR
Lowering Pipeline

i

AMDGCN ISA
(LLVM AMDGPU Backend)

pid_n = (pid % num_pid_in_group) // group_size_m

https://eithub.com/triton-lang/triton/blob/main/python/tutorials/01-vector-add.py

AMDZ1

https://github.com/triton-lang/triton/blob/main/python/tutorials/01-vector-add.py

Adding Instrumentation Infrastructure to MLIR Pass Pipeline

Instrumentation can be done on
either the MLIR or LLVM level

Instrumenting at the LLVM level
seems to balance our current needs of
lower-level control and upper-level
source information

Instrumentation is done using a
combination of LLVM Plugins,
analysis specific passes, and
associated Clang generated
CUDA/HIP kernels

The instrumentation passes are
added and registered in the
‘optimize module” phase of the
MLIR flow

This is a common section in MLIR
frameworks where the upper level
MLIR interfaces with the LLVM pass
manager

LLVM Developers' Meeting | October 2024

PassBuilder pb(nullptr , tuningOptions, std::nullopt

instrCbPtr);

pb.registerModuleAnalyses(mam);
pb.registerCGSCCAnalyses(cgam);
pb.registerFunctionAnalyses(fam);
pb.registerLoopAnalyses(lam);
pb.crossRegisterProxies(lam, fam, cgam, mam);

ModulePassManager mpm;
pb.registerVectorizerStartEPCallback(

[&](11lvm: :FunctionPassManager &fpm, llvm::OptimizationLevel level] {

fpm.addPass (BreakStructPhiNodesPass());
fpm.addPass (InstCombinePass());
}s
mpm.addPass (pb.buildPerModuleDefaultPipeline(opt));
mpm.run(*mod, mam);

PassBuilder pb(nullptr , tuningOptions, std::nullopt,

instrCbPtr);

std::string pluginfFile =
mlir::triton::tools::getStrEnv("LLVM_PASS_PLUGIN_PATH");

if (!pluginfFile.empty()) {
wto passPlugin = 1llvm::PassPlugin::Load(pluginFile);
if (lpassPlugin) {
1lvm: :Error Err = passPlugin.takeError();
std::string ErrMsg =
“"Pass Plugin Error: " + llvm::toString(std::move(Err));
hrow std::runtime_error(ErrMsg);

passPlugin->registerPassBuilderCallbacks(pb);

}

pb.registerModuleAnalyses(mam);
pb.registerCGSCCAnalyses(cgam);
pb.registerFunctionAnalyses(fam);
pb.registerLoopAnalyses(lam);
pb.crossRegisterProxies(lam, fam, cgam, mam);

ModulePassManager mpm;
pb.registerVectorizerStartEPCallback(
[&](1lvm: :FunctionPassManager &fpm, llvm::OptimizationLevel level) {

fpm.addPass(BreakStructPhiNodesPass());
fpm.addPass (InstCombinePass());
})s
mpm.addPass (pb.buildPerModuleDefaultPipeline(opt));

mpm_run(*mod. mam):

AMDZN

Implementation Details

Instrumentation pass : :
define amdgpu_kernel void @add_kernel(ptr addrspace(l) nocapture

Clones the kernel and adds an extra kernel argument for readonly %0, ptr addrspace(l) nocapture readonly %1, ptr
host-device communication addrspace(l) nocapture writeonly %2, 132 %3){

%5 = tail call i32 @llvm.amdgcn.workgroup.id.x(), !dbg !11
Loads pre-compiled bitcode file of instrumentation function %6 = shl 132 %5, 10, !dbg !12

. . . %7 = tail call i32 @llvm.amdgcn.workitem.id.x(), !dbg !13
Merges the instrumentation module into the MLIR %8 = shl 32 %7, 2, !dbg !13

generated module and resolves symbol conflicts %9 = and 132 %8, 1020, !dbg !13

, , , , . %10 or disjoint 132 %9, %6, !dbg !14

Injects the instrumentation function at pre-defined areas of %11 = dicmp slt 32 %10, %3, !dbg !15

interest br i1 %11, label %.critedge, label %.critedge2, !dbg !16

Runtime component of instrumentation module intercepts the

original kernel and swaps out the cloned/instrumented one define amdgpu_kernel void @add_kernelPv(ptr addrspace(l) nocapture

The instrumentation manages Host-Device communication readonly %0, ptr addrspace(l) nocapture readonly %L, ptr
addrspace(l) nocapture writeonly %2, i32 %3, |[ptr addrspace(l) %4)|{
GPU instrumentation is written to a device side global %5 = tail call 132 @llvm.amdgcn. WorkgrOUp d.x(), Tdbg 166

%6 = shl i32 %5, 10, !dbg !67
%7 = tail call i32 @llvm.amdgcn.workitem.id.x(), !dbg !68
If a GPU wave tries to write to the device side data buffer buty %8 = shl i32 %7, 2, !dbg !68

. Va v 4 = 1 4 | |
finds that there is insufficient space %9 = and 132 %8, 1020, idbg 168
%10 = or disjoint 132 %9, %6, !dbg !69

Signals the host code to empty the buffer %11 = dcmp slt 132 %10, %3, !dbg !70
br i1 %11, label %.critedge, label %.critedge2, !dbg !71

memory buffer

Once the host signals the wave that the buffer has

been emptied, the wave then proceeds

7 LLVM Developers' Meeting | October 2024 AMDH

8

Triton Memory Trace Example

Memory traces track and store the —-attribute__((used)) __device__ void

, memoryTrace(void *addressPtr, uint32_t LocationId, void *hostBufferPtr) {
virtual memory access pattern of a if (isSharedMenPtr (addressPtr))
return;

kEl’ﬂEl uint64_t address = reinterpret_cast<uint64_t>(addressPtr);

// Mask of the active threads in the wave
\ \ int activeThreadMask = __builtin_amdgcn_read_exec();

Memor\/ traces instrumentation paSS // Find first active thread in the wave by finding the position of the least
// significant bit set to 1 in the activeThreadMask
const int firstActivelLane = __ffsll(activeThreadMask) - 1;

Adds d Compller paSS at ever\/ g|0ba| uinte4_t addrArray[WaveFrontgize];

|Oad/StOI’e that for (int i = 0; i < WaveFrontSize; i++) {
addrArray[i] = __shfl(address, i, WaveFrontSize);

Inserts a GPU function that calculates the ¥

. uint32_t Lane =
pervvave\nrtualaddresses __builtin_amdgcn_mbcnt_hi(~Qu, __builtin_amdgcn_mbcnt_lo(~Qu, 0Ou));

One address for each thread per wave if (Lane == firstActiveLane) {
uint64_t MemTraceData = reinterpret_cast<MemTraceData_t>(hostBufferPtr);
AMD GPUs have 64 threads perwave unsigned int hw_id = 0;
' uint64_t Time = 0;
Address meta data is also added to the unsigned int xcc_id = 0;

trace Time = __builtin_amdgcn_s_memrealtime();
asm volatile("s_getreg_b32 %0, hwreg(HW_REG_HW_ID)" : "=s"(hw_1id));
. MemTraceData.Cycle = Time;
Source location MemTraceData.LocationId = LocationId;
, MemTraceData.WaveId = hw_id & 0Oxf;
MLIR level objects (e.g., source tensor MemTraceData.SIMD = (hw_id & 0x30) >> 4;
. MemTraceData.CU (hw_id & 0xf00) >> 8;
Timestamps MemTraceData.SE = (hw_id & 0xe000) >> 13;
MemTraceData.XCD = xcc_1id;
Wave, XCD, SIMD, CU, etc. IDs for (int i = 0; 1 < WaveFrontSize; i++)
MemTraceData.addrArray[i] = addrArray[i];

}
LLVM Developers' Meeting | October 2024 AMDH

9

attn_fwd
attn_fwd
attn_fwd
attn_fwd
attn_fwd
attn_fwd
attn_fwd
7 attn_fwd

NNt O

{Cycle,Location}:
{Cycle, Location}:
{Cycle, Location}:
{Cycle, Location}:
{Cycle, Location}:
{Cycle,Location}:
{Cycle, Location}:
{Cycle,Location}:
{Cycle,Location}:
{Cycle, Location}:
{Cycle, Location}:
{Cycle, Location}:
{Cycle, Location}:
{Cycle, Location}:
{Cycle,Location}:
{Cycle, Location}:
{Cycle, Location}:
{Cycle, Location}:
{Cycle,Location}:
{Cycle, Location}:
{Cycle, Location}:
{Cycle, Location}:
{Cycle, Location}:
{Cycle, Location}:
{Cycle, Location}:
{Cycle,Location}:

vLLM Triton AMD GPU backend, on MI300X, offline_inference. p}y example:
https://github.com/vllm-project/vlim/blob/main/éxamples/offli

Memory Trace Example Output

triton_flash_attention.

y:365:35

trlton_flash_attentlon.py:364.37
triton_flash_attention.py:372:35
triton_flash_attention.py:371:37
triton_flash_attention.py:68:25
triton_flash_attention.py:72:25
triton_flash_attention.py:70:25
triton_flash_attention.py:662:26

{12803944980874, 3t
{12803937931218, 2}
{12803994937474, 7}
{12803952142822, 2}
{12803995051278, 7}
{12803935991474, 2}
{12803959181386, 2}
{12803944718806, 2%
{12803995163446, 7}
{12803947806654, 3+
{12803943324094, 2}
{12803934133682, 2}
{12803960281222, 3}
{12803995285686, 7}
{12803995403554, 7}
{12803995523574, 7}
{12803950173022, 2}
{12803947918426, 2}
{12803932340518, 2}
{12803929916198, 2}
{12803995646150, 7+
{12803929723206, 2}
{12803942789534, 2}
{12803942402354, 2}
{12803944185586, 3}
{12803967506362, 3}

{WG_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{WG_ID,WF_ID,
{WG_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{WG_ID,WF_ID,
{WG_ID,WF_ID,
{W6_ID,WF_ID,
{WG_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{W6_ID,WF_ID,
{WG_ID,WF_ID,

GLOBAL LOAD
GLOBAL LOAD
GLOBAL LOAD
GLOBAL LOAD
GLOBAL LOAD
GLOBAL LOAD
GLOBAL LOAD
GLOBAL STORE

WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:
WAVE_ID,SIMD_ID,CU_ID,SE_ID}:

{0,0, 8,1,11,6} {addrs}:
{102,6, 1,2,8,7} {addrs}:
{addrs}:
{addrs}:
{addrs}:
{addrs}:
{addrs}:
{addrst:
{addrs}:
{addrs}:
{addrs}:
{addrs}:
{addrs}:
{addrs}:
{addrs}:
{addrs}:
} {addrs}: Ox7+517d044aB8,0x7+f517d044a08,
{addrs}: Bx7f517d044a04,0x7f517d044a04,0x
{addrst:
{addrs}:
{addrs}:
{addrs}:
{addrs}:
{addrs}:
{addrs}:
{addrs}:

{66,0, 0,3,6,6}
{71,5, 1,1,0,2}
{66,0, 0,3,6,6}
{53,2, 0,2,1,3}
{94,1, 0,0,7,7}
{73,0, 0,3,7,0}
{66,0, 0,3,6,6}
{99,2, 0,2,6,1}
{48,7, 1,2,4,6}
{99,7, 1,1,6,1}
{9,5, 1,0,12,0}
{66,0, 0,3,6,6}
{66,0, 0,3,6,6}
{66,0, 0,3,6,6}
{14,7, 1,1,10,7
{4,7, 1,3,9,5}

{82,6, 1,2,2,4}
{54,7, 1,1,2,7}+
{66,0, 0,3,6,6}
{46,7, 1,1,1,7}
{67,0, 0,3,2,1}
{87,2, 0,3,2,2}
{9,7, 1,1,12,08}
{87,7, 1,0,2,2}

ne_inference.py

LLVM Developers' Meeting | October 2024

0x71517d044a00,0x7f517d044a00,0.
Ox7f517d044a24,0x7F517d044a24,
Ox7f4fc480F334,0x7F4Fc4801934,0
0x7f517d044a18,0x7f517d044a18,0
Ox7t4fc480T336,0x7F4Tc4801936,0
0x7f517d044al4,0x7f517d044a14,0:
0x7f517d044a20,0x7f517d044a20,0.
0x7t517d044alc,0x7f517d044alc, 0.
Ox7t4Tc480F340,0x7T4Tc4801940,0.
0x7f517d044a20,0x7+517d044a20,0;
Ox7f517d044al4,0x7f517d044al14,0.
0x7+517d044a24,0x7+517d044a24,0.
0x7+517d044a00,0x7+517d044a00,0;
Ox7t4Tc480F342,0x7fT4Tc480T942,Q
Ox7t4Tc480F344,0x7T4Tc480T944,0
OxX7T4Tc480F346,0x7T4Tc4a80T946,0.

0x7t517d044alc,0x7f517d044alc, 0.
0x7f517d044al4,0x7+517d044al4,0;
Ox7f4fc480F350,0x7F4Fc480950,0;
0x7¥517d044a10,0x7f517d044a10,0.
0x7+517d044a18,0x7+517d044a18, 0.
0x7f517d044a20,0x7f517d044a20,0.
0x71517d044a00,0x7f517d044a00,0.
0x71517d044alc,0x7f517d044alc, 0.

AMDZ1

https://github.com/vllm-project/vllm/blob/main/examples/offline_inference.py

Current Status and Future Development Roadmap

Implemented Instrumentation Passes
Intra-kernel timestamps for region-based timing
Memoary access pattern traces

Memory coalescing and shared memory bank conflicts
Interested in hearing from users to influence future development road map

The infrastructure to use the instrumentation passes
Triton
https://github.com/triton-lang/triton/pull/3953 (May 2024)
IREE
https.//github.com/iree-org/iree/pull/18347 (August 2024)

Instrumentation passes are open-source and extendible/modifiable by users

https://github.com/CRobeck/instrument-amdgpu-kernels

10 LLVM Developers' Meeting | October 2024

AMDZN

https://github.com/triton-lang/triton/pull/3953
https://github.com/iree-org/iree/pull/18347
https://github.com/CRobeck/instrument-amdgpu-kernels

Copyright and disclaimer

©2024 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS flashes,
firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no
obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to
time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS 1S." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE
USE OF ANY INFORMATION

11 LLVM Developers’ Meeting | October 2024 AMDH

	Instrumenting MLIR Based ML Compilers for GPU Performance Analysis and Optimization

	Slide 1
	Slide 2: Outline
	Slide 3: Background and Motivation
	Slide 4: Challenges Instrumenting MLIR-GPU Frameworks
	Slide 5: MLIR Based ML Compiler Framework Overview
	Slide 6: Adding Instrumentation Infrastructure to MLIR Pass Pipeline
	Slide 7: Implementation Details
	Slide 8: Triton Memory Trace Example
	Slide 9: Memory Trace Example Output
	Slide 10: Current Status and Future Development Roadmap
	Slide 11: Copyright and disclaimer
	Slide 12

