
Half-precision in LLVM libc
Nicolas Celik – Google Summer of Code 2024

LLVM libc

- C standard library implementation part of the LLVM Project
- Written in C++
- Supports x86-64, AArch64, 32-bit ARM, 32-bit and 64-bit RISC-V
- Also supports AMD and NVIDIA GPUs
- Learn more at https://libc.llvm.org/

https://libc.llvm.org/

Half-precision

- C23 defines new _FloatN types
- Among them, _Float16

- Corresponds to IEEE 754’s binary16 format
- Also known as half-precision or FP16
- Use case examples: neural networks, graphics

- C23 also defines new _FloatN-typed math functions accordingly
- float fabsf(float x); → _FloatN fabsfN(_FloatN x);
- Example: _Float16 fabsf16(_Float16 x);

Half-precision in LLVM libc

- This Google Summer of Code project aimed to implement C23 _Float16
math functions in LLVM libc

- A step toward C23 support in LLVM libc
- Makes LLVM libc is the first known libc to implement C23 _Float16 math

functions

Project Goals

1. Basic operations

- Examples: fabsf16, roundf16, fmaximumf16, ufromfpf16, f16addf128
- Implemented using simple bit-manipulation algorithms
- All 70 planned _Float16 basic operations have been implemented
- https://github.com/llvm/llvm-project/issues/93566

https://github.com/llvm/llvm-project/issues/93566

2. Optimizations

- Optimize certain basic operations using compiler builtins
- We wanted to avoid using inline assembly and target-specific intrinsics
- The _Float16, float and double variants of the following functions have

been optimized:
- ceil, floor, rint, round, roundeven, trunc
- copysign
- fmax, fmin, fmaximum, fminimum, fmaximum_num, fminimum_num

https://gist.github.com/overmighty/9c8e17f9580594cc00cce82f83caef60

https://gist.github.com/overmighty/9c8e17f9580594cc00cce82f83caef60

https://gist.github.com/overmighty/a9a9de847eb11c667ba6b257375afe83

https://gist.github.com/overmighty/a9a9de847eb11c667ba6b257375afe83

- ceilf16 on Google Tensor G3 (Pixel 8) (Clang 17):
- Generic implementation: 1.38 - 8.92 ns
- Builtin-based implementation: 0.70 - 0.79 ns

- fmaxf16 on Intel Core i7-13700H (without F16C) (Clang 18):
- Generic implementation: 7.19 - 133.4 ns
- Builtin-based implementation: 3.81 ns

- fmaxf16 on Intel Core i7-13700H (with F16C) (Clang 18):
- Generic implementation: 6.17 ns
- Builtin-based implementation: 3.81 ns

Performance

3. Higher math functions

- Examples: expf16, exp2m1f16, logf16, coshf16, sinhf16
- Require more math to implement, e.g., polynomial approximations
- We knew we couldn’t implement them all during Google Summer of Code
- 17 out of the 54 planned higher math functions have been implemented
- https://github.com/llvm/llvm-project/issues/95250

https://github.com/llvm/llvm-project/issues/95250

Issues encountered

Compiler bugs: old Clang crashes

- Clang 11 is still supported by LLVM libc and used in post-merge CI
- Crashes when compiling some of the _Float16 code for AArch64

fatal error: error in backend: Cannot select: 0x367e6b60: f16 = fp_round 0x3693a720,
TargetConstant:i64<0>, llvm-project/libc/src/__support/FPUtil/generic/FMA.h:191:33
 0x3693a720: f128,ch,glue = CopyFromReg 0x3693d2a0, Register:f128 $q0, 0x3693d2a0:1,
llvm-project/libc/src/__support/FPUtil/generic/FMA.h:191:39
 0x3693ca80: f128 = Register $q0
…

Compiler bugs: current Clang miscompiles

- Targets may not have full hardware support for half-precision
- They may only have conversion instructions or no hardware support at all
- Current versions of Clang may generate conversions that result in incorrect

behavior

Compiler bugs: current Clang miscompiles

Clang 16:

__llvm_libc_20_0_0_git::fabsf16(_Float16):
 push rbp
 mov rbp, rsp
 vpextrw eax, xmm0, 0
 and eax, 32767
 vpinsrw xmm0, xmm0, eax, 0
 pop rbp
 ret

Clang 19:

.LCPI0_0:
 .long 0x7fffffff
__llvm_libc_20_0_0_git::fabsf16(_Float16):
 push rbp
 mov rbp, rsp
 call __extendhfsf2@PLT
 vbroadcastss xmm1, dword ptr [rip
+ .LCPI0_0]
 vandps xmm0, xmm0, xmm1
 call __truncsfhf2@PLT
 pop rbp
 ret

Suboptimal codegen

GCC 14 (1.33-1.64 ns on i7-13700H):

foo(_Float16):
 vpxor xmm1, xmm1, xmm1
 vpblendw xmm0, xmm1, xmm0, 1
 vcvtph2ps xmm0, xmm0
 vroundss xmm0, xmm0, xmm0, 10
 vinsertps xmm0, xmm0, xmm0, 0xe
 vcvtps2ph xmm0, xmm0, 4
 ret

Clang 18 (~9.12 ns on i7-13700H):

foo(_Float16):
 push rbp
 mov rbp, rsp
 vpextrw eax, xmm0, 0
 vmovd xmm0, eax
 vcvtph2ps xmm0, xmm0
 vroundss xmm0, xmm0, xmm0, 10
 vcvtps2ph xmm0, xmm0, 4
 vmovd eax, xmm0
 vpinsrw xmm0, xmm0, eax, 0
 pop rbp
 ret

Compiler runtime issues: missing builtins

- The libgcc versions used on 32-bit Arm and RISC-V post-merge CI are
missing builtins to convert from/to _Float16

- compiler-rt is missing builtins to convert between _Float16 and x86 long
double

Compiler runtime issues: incorrect behavior

- libgcc implements _Float16 conversion builtins differently for 32-bit Arm:
always rounds to nearest, ties to even (ignores actual CPU rounding mode)

- compiler-rt uses the same implementation on all targets,
always rounds to nearest, ties to even

- Before LLVM 19, compiler-rt may incorrectly use GPRs instead of vector/FP
registers for _Float16, depending on how it was built

Lessons learned

- Issues that you can encounter when implementing functions for a new
floating-point type in a library:

- Compiler bugs
- Suboptimal codegen
- Compiler runtime bugs

- The less hardware support for the type a target has, the more likely you are
to run into issues with it

- Targets without hardware support for the new FP type may not be a priority
for hardware vendors’ compiler teams

Easier addition of new FP types in libraries

- Implement fully working soft-float operations in compilers from the
beginning

- Implement optimized codegen for targets with hardware support later
- Save libraries from tangled conditions based on compiler version and

target to enable support for new types
- Would require convincing hardware vendors to change their priorities

Conclusion

- LLVM libc is the first known libc to implement C23 _Float16 math functions
- Not all _Float16 math functions are implemented yet
- All of them are supported on x86-64
- Some were temporarily disabled on AArch64 and GPUs
- All were temporarily disabled on 32-bit Arm and on RISC-V due to compiler

runtime issues
- We’re working on enabling them back

