
Emil Pedersen — October 24th, 2024 — LLVM Dev Meeting 2024

A data-driven approach to 
debug info quality
Using the Swift frontend as an example



Introduction
Emil Pedersen

• Student at Epitech in Paris


• Interned at Apple earlier this year


• This presentation is based on my intern project


• Speaking in a personal capacity


Special thanks to my mentor Adrian Prantl, and the Swift and LLDB teams

 2



Why debug optimized code?

 3

Embedded 
Programming Crash Logs Complex 

Programs



Optimized code is hard to debug

• Stepping is not always reliable


• Variables are often unavailable


• Variables sometimes disappear altogether

 4



Optimized code is hard to debug

• Stepping is not always reliable


• Variables are often unavailable 

• Variables sometimes disappear altogether

 5

{
This is preventable



Why does this happen?
The Swift compiler pipeline

 6

LLVM IR Machine IR Object FileSILASTSource Code

Macros Passes Passes Passes

Variable

VarDecl

debug_value

#dbg_value DWARF

DBG_VALUE



Why does this happen?

• Variables can be lost in translation


• Optimization passes aren’t designed to retain debug info for variables


• SIL optimization passes often disregard variable debug info altogether

 7



Why does this happen?

• Variables can be lost in translation


• Optimization passes aren’t designed to retain debug variables 

• SIL optimization passes often disregard debug variables altogether

 8

How can we improve optimization passes?

{



How can we improve optimization passes?
Simple approaches

 9

Read optimization passes and find where variables are dropped

Using known examples of lost variables, bisect to find where it is dropped



How can we improve optimization passes?
DExTer: A good tester for a known issue

• It can help bisecting LLVM passes


• It requires a code sample with a known debugging problem


• It runs the whole pipeline, which is slow

 10



Variable drop statistics

 11

The solution



 12

LLVM IR Machine IR Object FileASTSource Code

Macros Passes Passes Passes

Variable drop statistics
Within the optimization pipeline

SIL



Variable drop statistics
Within the optimization pipeline

 13

Pass Pass StatisticsStatistics Pass StatisticsStatistics



Variable drop statistics
Within the optimization pipeline

 14

Pass Pass StatisticsStatistics Pass StatisticsStatistics

Variables VariablesDiff

Report dropped variables



What constitutes a variable?

• Same name


• Same scope (including inlining information)


• Same source location

 15



Which Swift code base to use?

 16

Standard Library

Source Compatibility Test Suite 200+ open source projects

Impacts all code



Report results (SIL)
Variables dropped by SIL passes, -Ospeed (Top 8)

 17

SimplifyCFG

SILCombine

PerformanceConstantPropagation

DCE

EarlySROA

PhiExpansion

Mem2Reg

DeadObjectElimination

Other

Number of dropped variables in the source compatibility test suite 
March 2024

 160 080
 31 006
 51 257

 86 048
 103 142

 299 550
 380 993

 778 922
 826 581



Some variables should be dropped
Variables that can be completely removed

• When a function or scope is unreachable


➡ DCE, DeadFunctionElimination


• When a function is marked transparent


➡ DeadAllocationElimination

 18

The variable will not appear in the debugger



Some variables should be dropped
Variable values that must be dropped

• When the variable is unused, or moved


➡ SimplifyCFG, Dead Object Elimination


• When a value is folded and not recoverable


➡ SILCombine, Constant Propagation

 19

The variable will appear unavailable in the debugger



Some variables shouldn’t be dropped
Variable values that must NOT be dropped

• When the value changes memory location


➡ SROA, Mem2Reg, PhiExpansion


➡ AllocBoxToStack, AllocStackHoisting, LoadableByAddress


• When a constant is folded


➡ DiagnosticConstantPropagation

 20



Some variables shouldn’t be dropped
Variable values that must NOT be dropped

• When the value changes memory location


➡ SROA, Mem2Reg, PhiExpansion


➡ AllocBoxToStack, AllocStackHoisting, LoadableByAddress 

• When a constant is folded


➡ DiagnosticConstantPropagation

 21

These SIL passes are run for debug builds



Report results (SIL)
Variables dropped by SIL passes, -Onone

 22

AllocBoxToStack

LoadableByAddress

AllocStackHoisting

MandatoryInlining

PredictableDeadAllocationElimination

DiagnosticConstantPropagation

OnoneSimplification

DiagnoseUnreachable

NoReturnFolding

Number of dropped variables in the source compatibility test suite (-Onone) 
March 2024

 1
 9
 83
 100

 497
 632

 885
 1 596

 8 173

BEFORE



Report after changes (SIL)
Variables dropped by SIL passes, -Onone

 23

AllocBoxToStack

LoadableByAddress

AllocStackHoisting

MandatoryInlining

PredictableDeadAllocationElimination

DiagnosticConstantPropagation

OnoneSimplification

DiagnoseUnreachable

NoReturnFolding

Number of dropped variables in the source compatibility test suite (-Onone) 
Present

 1
 22
 142

 0
 785
 751

 0
 586

 0

AFTER



Pass Pass StatisticsStatistics Pass StatisticsStatistics

Variables VariablesDiff

Report dropped variables

Recompile with flags

How to find mistakes in the passes?

 24



Variables VariablesDiff

Report dropped variables

Recompile with flags

Debug with LLDB

Fix it (and create a test case)

How to find mistakes in the passes?

 25



Report results (SIL)
Variables dropped by SIL passes, -Ospeed (Top 8)

 26

SimplifyCFG          

SILCombine          

ConstantPropagation          

DCE          

EarlySROA          

PhiExpansion          

Mem2Reg          

DeadObjectElimination          

Other          

Number of dropped variables in the source compatibility test suite 
March 2024

 160 080
 31 006
 51 257

 86 048
 103 142

 299 550
 380 993

 778 922
 826 581

BEFORE



Report after changes (SIL)
Variables dropped by SIL passes, -Ospeed (Top 8)

 27

SimplifyCFG          

SILCombine          

ConstantPropagation          

DCE          

EarlySROA          

PhiExpansion          

Mem2Reg          

DeadObjectElimination          

Other          

Number of dropped variables in the source compatibility test suite 
Present

 86 510
 19 366

 447
 0
 0

 109 124
 14 285

 621 387
 929 872

AFTER

+12%

-20%

-96%

-64%


-100%

-100%

-99%

-38%

-46%



Report after changes (SIL)
Variables dropped by SIL passes, -Ospeed (Top 8)

 28

SimplifyCFG

SILCombine

DCE

TempRValueOpt

DeadObjectElimination

PredictableDeadAllocationElimination

PerformanceConstantPropagation

InitializeStaticGlobals

Other

Number of dropped variables in the source compatibility test suite 
Present

 44 491
 7 117
 14 285
 15 547
 19 366
 19 831

 109 124
 621 387

 929 872

AFTER



Pull Requests
For the variable drop statistics

• Swift


• swiftlang/swift#73334


• LLVM


• llvm/llvm-project#102233 (by Shubham Rastogi)

 29

https://github.com/swiftlang/swift/pull/73334
https://github.com/llvm/llvm-project/pull/102233


Future Directions

• Merge the patch for LLVM IR


• Add this feature to Machine IR


• Add a similar detection when lowering (IRGen, ISel, etc.)


• Fine-grained statistics for InstCombine, SILCombine, etc.


• Discriminate between the reasons why a variable was dropped

 30



Thank you!
Questions?

 31

Emil Pedersen
contact@emil.codes

github.com/Snowy1803
in/emil-b-pedersen

mailto:contact@emil.codes
https://github.com/Snowy1803
https://linkedin.com/in/emil-b-pedersen

