
Making upstream MLIR more
friendly to programming

languages
Fabian Mora (U. of Delaware)

Mehdi Amini (NVIDIA)

Motivation

ML compilers and MLIR

● MLIR has seen great success in
ML compilers:

○ IREE
○ XLA

● Consequently, ML compilers
have driven a lot of development
in upstream MLIR

Flang and ClangIR

● Flang is getting closer to
production

○ https://discourse.llvm.org/t/proposa
l-rename-flang-new-to-flang

● ClangIR recently got approved
for upstreaming

○ https://discourse.llvm.org/t/rfc-upst
reaming-clangir

https://discourse.llvm.org/t/proposal-rename-flang-new-to-flang
https://discourse.llvm.org/t/proposal-rename-flang-new-to-flang
https://discourse.llvm.org/t/rfc-upstreaming-clangir
https://discourse.llvm.org/t/rfc-upstreaming-clangir

Beyond Flang and ClangIR

● We should expect more generic
programming languages
exploring MLIR

The burden to downstream compilers

● There are many gaps in
upstream MLIR for representing
programming languages

● This leads to work duplication
○ Operations, eg. alloca, load, loop-like
○ Analyzes, eg. alias analysis,

control-flow, variable lifetime
○ Transformations, eg. control-flow

flattening

Limitations

Lack of high-level support for basic types

● Many basic constructs are
representable only in target
dialects

○ Eg. structs, allocas, load, stores

● Forces developers to choose a
target / ABI early on the pipeline

No high-level dialect for struct

No early exit control-flow

● Generic high-level control-flow is
illegal per the language reference

○ continues, breaks, throws, are illegal
○ transformations and analyses fail on

these

Illegal control-flow

https://discourse.llvm.org/t/rfc-region-based-control-flow-with-early-exits-in-mlir/76998

https://discourse.llvm.org/t/rfc-region-based-control-flow-with-early-exits-in-mlir/76998

The `ptr` dialect: Modularizing LLVM ptr ops

The `ptr` dialect

A proposal to extract pointer related
ops from LLVM into their own dialect:

● work for higher-level types:
pre-LLVM / pre-ABI lowering

● make them target independent:
it’ll work for non-LLVM backend
(e.g. EmitC)

○ https://discourse.llvm.org/t/rfc-ptr-dial
ect-modularizing-ptr-ops-in-the-llvm-dial
ect Fill function for

non-LLVM types

!ptr_rw = !ptr.ptr<#ptr.rw>

func.func @fill(%x: !ptr_rw

 %c: tensor<4xf32>, %n: i32) {

 %c0 = arith.constant 0 : i32

 %c1 = arith.constant 1 : i32

 scf.for %i = %c0 to %n step %c1 : i32 {

 %off_f32 = ptr.type_offset tensor<4xf32> : i32

 %off = arith.muli %i, %off_f32 : i32

 %x_off = ptr.ptradd %x, %off : !ptr_rw, i32

 ptr.store %x_off, %c : !ptr_rw, tensor<4xf32>

 }

}

https://discourse.llvm.org/t/rfc-ptr-dialect-modularizing-ptr-ops-in-the-llvm-dialect
https://discourse.llvm.org/t/rfc-ptr-dialect-modularizing-ptr-ops-in-the-llvm-dialect
https://discourse.llvm.org/t/rfc-ptr-dialect-modularizing-ptr-ops-in-the-llvm-dialect

`ptr`: features and design

● Pointer operations on LLVM
types will be translated directly
into LLVM IR

● Conversions to SPIR-V and EmitC
will be added

Lowerings of ptr

`ptr`: features and design

The memory space can introduce
restrictions on operations:

● Eg. a memory space can be constant,
and thus indicate that stores are illegal Verification error

`ptr`: features and design

● `ptr` abstracts pointer semantics
via encoding the properties of
the memory space as an
attribute interface

● The memory model is inspired by
the LLVM memory model

Attribute interface

`ptr`: features and design

● `ptr` has conversions operations
to and from memref

● Allows turning the bare ptr
conversion into a pass

Bare ptr convention

func.call @foo(%memref): (memref<2x4xf64>)-> ()

// mlir-opt --apply-bare-ptr-convention

%ptr = ptr.from_memref %memref: memref<2x4xf64> ->

!ptr.ptr

func.call @foo(%ptr): (!ptr.ptr) -> ()

`ptr`: performance impacts

● Test description:
○ Synthetic test with 100k operations

converting memref to LLVM IR

● <3% LLVM translation
performance impact

Test Metric Slowdown

Parse and print

Total time 0.9911

Text Parser 0.9929

Bytecode Output 0.9859

Convert to LLVM

Total time 1.0003

Bytecode Parser 0.9912

Bytecode Output 1.0229

To LLVM 0.9929

Canonicalize 0.9933

Translate to LLVM IR
Total time 1.0219

To LLVMIR 1.0392

Modularizing LLVM Dialect

Modularizing LLVM Dialect

Some dialects are so close to LLVM semantics that they can be directly translated to LLVM IR:

● SCF dialect

● Arith dialect (when not operating on tensors)

● Ptr dialect (when operating on LLVM types)

=> Important for JITs: save compile-time by
avoiding unnecessary dialect conversions!

Modularizing LLVM dialect vs new dialects

Modularizing:

● Reduces pipeline complexity:
○ No: arith -> llvm dialect 1:1 conversion

● Help to solve missing abstractions for
programming languages (like the `ptr`
support for other types)

● Support for other target dialects like SPIR-V
or EmitC

● What about divergence with LLVM?
○ LLVM-specific operations will be kept in

LLVM Dialect

Modularizing LLVM dialect vs new dialects

New dialects:

● Preserves LLVM Dialect as 1-1 mapping
with LLVM IR

● Creates redundancy between dialects
○ Eg. arith and LLVM
○ Cost of documentation and

redefining semantics
○ Canonicalizer duplication

Modularizing:

● Reduces pipeline complexity:
○ No: arith -> llvm dialect 1:1 conversion

● Help to solve missing abstractions for
programming languages (like the `ptr`
support for other types)

● Support for other target dialects like SPIR-V
or EmitC

● What about divergence with LLVM?
○ LLVM-specific operations will be kept in

LLVM Dialect

What about arith? Can we remove redundancy?

● In most cases Arith and LLVM are
redundant
○ Both operate on almost identical set of

types

● Arith cannot be removed without
hurting SPIR-V and EmitC

● What about removing arith ops
from LLVM?

Add in arith and LLVM

Arith lowerings

What about arith? Can we remove redundancy?

● We created a proof of concept
arith translation to LLVM interface
to test performance

● Test description:
○ Synthetic test with 600k operations

translating arith + memref + func to
LLVM IR

● arith -> llvmir is 1.5-1.85 faster
than arith -> llvm -> llvmir

Test results

Metric Speedup

Convert to LLVM 1.8457

Translate to LLVM IR 0.8845

To-LLVM +
To-LLVMIR

1.4969

The road ahead/RFC

A proposal for further modularizing/creating dialects

● As with pointers, there are other
primitive types without high-level
dialect support:

○ struct
○ arrays

● These types should have
non-target dialect support in
upstream MLIR

● In most cases these are dialects
with few operations

Struct and array
dialects

A PL dialect collection?

A collection of dialects for
representing common programming
language primitives, suitable to be
emitted from various frontends.

PL example

func.func @bar(%n: index) {

 // Low-level unique pointers

 %ptr = pl.alloc %n, f32: !ptr

 pl.at_scope_exit {

 pl.free %ptr: !ptr

 }

 // High-level exception handling

 pl.try {

 // ...

 %exc = pl.runtime_exception "runtime error"

 pl.throw %exec

 } catch(%exc: !pl.exception) {

 // ...

 }

}

General structured control flow

Programming Languages need early-exit
support:

● Support should keep IR overhead
low

● Control-flow from ops to ancestors
seems a good tradeoff

● Think of Interfaces to model the
specifics

● Impact on analysis? Dominance, etc.
Generic control-flow

https://discourse.llvm.org/t/rfc-region-based-control-flow-with-early-exits-in-mlir/76998

https://discourse.llvm.org/t/rfc-region-based-control-flow-with-early-exits-in-mlir/76998

Target ABI abstraction

ABI abstraction should be a long term
goal:

● Promoting clang ABI handling
into MLIR target codegen
abstractions.

● Mirror C type system in MLIR to
implement the itanium C++
calling convention without
requiring clang.

Target calling convention
expansion

Questions?

