Making upstream MLIR more
friendly to programming
languages

Fabian Mora (U. of Delaware)
Mehdi Amini (NVIDIA)



Motivation



ML compilers and MLIR

e MLIR has seen great success in

ML compilers:
o IREE
o XLA

e Consequently, ML compilers
have driven a lot of development
in upstream MLIR




Flang and ClangIR

e Flang is getting closer to

production
o https://discourse.llvm.org/t/proposa

I-rename-flang-new-to-flang

e ClangIR recently got approved

for upstreaming
o https://discourse.llvm.org/t/rfc-upst
reaming-clangir

MLIR

}%
-


https://discourse.llvm.org/t/proposal-rename-flang-new-to-flang
https://discourse.llvm.org/t/proposal-rename-flang-new-to-flang
https://discourse.llvm.org/t/rfc-upstreaming-clangir
https://discourse.llvm.org/t/rfc-upstreaming-clangir

Beyond Flang and ClangIR

MLIR

.
B8
e We should expect more generic M—\ ’
programming languages »M
exploring MLIR %—

DB




The burden to downstream compilers

cir

e There are many gaps in cir.alloca

ciraf

upstream MLIR for representing
programming languages

cir.load

e This leads to work duplication

o  Operations, eg. alloca, load, loop-like Jir

o Analyzes, eg. alias analysis, jiralloca
control-flow, variable lifetime

o Transformations, eg. control-flow
flattening

3Ir.iF

j?r.loo‘o(

“}ir....

fir

fir.alloca

firif
firload
fr....

rir.alloca

riraf




Limitations



Lack of high-level support for basic types

e Many basic constructs are
representable only in target

dialects
o Eg. structs, allocas, load, stores

e Forces developers to choose a
target / ABI early on the pipeline

getelementptr |
N\ V)

emite

w

No high-level dialect for struct

.6\

getelementptr
/4

¥

emite

.6



No early exit control-flow

e Generic high-level control-flow is

illegal per the language reference
o continues, breaks, throws, are illegal
o transformations and analyses fail on
these

for (int 1 =0; i < n ;
if (cond(i) == 0)
continue;
else if (cond(i) > 0)
break;
[/

lllegal control-flow

https://discourse.llvm.org/t/rfc-region-based-control-flow-with-early-exits-in-mlir/76998

ok

{


https://discourse.llvm.org/t/rfc-region-based-control-flow-with-early-exits-in-mlir/76998

The ptr dialect: Modularizing LLVM ptr ops



The "ptr dialect

A proposal to extract pointer related
ops from LLVM into their own dialect:

e work for higher-level types:
pre-LLVM / pre-ABI lowering

e make them target independent:
it'll work for non-LLVM backend
(e.g. EmitC)

o  https://discourse.llvm.orqg/t/rfc-ptr-dial
ect-modularizing-ptr-ops-in-the-llvm-dial

ect

!ptr rw = !ptr.ptr<f#ptr.rw>
func.func Qfill (%x:

$c: tensor<4xf32>, %n: 1i32) {

!ptr rw

%c0 = arith.constant 0 : i32
%$cl = arith.constant 1 : i32
scf.for %1 = %c0 to %n step %cl : i32 {

soff £f32 = ptr.type offset tensor<4xf32> : 132
$0off = arith.muli %i, %off £32 : 132

$x _off = ptr.ptradd %x, %off : !ptr rw, 132
ptr.store %$x off, %c :

}
}

!ptr rw, tensor<4xf32>

Fill function for
non-LLVM types


https://discourse.llvm.org/t/rfc-ptr-dialect-modularizing-ptr-ops-in-the-llvm-dialect
https://discourse.llvm.org/t/rfc-ptr-dialect-modularizing-ptr-ops-in-the-llvm-dialect
https://discourse.llvm.org/t/rfc-ptr-dialect-modularizing-ptr-ops-in-the-llvm-dialect

ptr': features and design

e Pointer operations on LLVM
types will be translated directly
into LLVM IR

e Conversions to SPIR-V and EmitC
will be added

B -
memref
/
A
3 Vo

_J

V

LLVM IR

Lowerings of ptr



“ptr': features and design

The memory space can introduce
restrictions on operations:

e Eg. a memory space can be constant,
and thus indicate that stores are illegal

ptr.store %ptr :
Iptr.ptr<#ptr.read_

Verification error

only<@>>,

f32



“ptr': features and design

def MemorySpaceAttrInterface : AttrInterface<"MemorySpaceAttrInterface"> {
let description = [{
This interface defines a common API for interacting with the memory model of
a memory space and the operations in the pointer dialect.

o ‘ptr‘ abstracts pOinter SemantiCS Furthermore, this interface allows concepts such as read-only memory to be

adequately modeled and enforced.

. . . ST
Vla enCOdIng the propertles Of let cppNamespace = "::mlir::ptxr";
let methods = [
the memory space as an Tk e oM thads
/*desc=*/ [{

1 1 This method checks if it's valid to load a value from the memory space

attrIbUte Interface with a specific type, alignment, and atomic ordering.
If “emitError” is non-null then the method is allowed to emit errors.

e The memory model is inspired by
the LLVM memory model

"::mlir::LogicalResult",

"isValidLoad",

(ins "::mlir::Type":$type,
"::mlir::ptr::AtomicOrdering":$%$ordering,
"::mlir::IntegerAttr":$alignment,

"::11vm: : function_ref<::mlir::InFlightDiagnostic()
>":$emitError)

Attribute interface



ptr': features and design

‘ptr has conversions operations
to and from memref

Allows turning the bare ptr
conversion into a pass

func

sptr

'ptr.

func

.call @foo (%memref): (memref<2x4xfo64d>)-> ()

= ptr.from memref Imemref: memref<2x4xf64> ->
ptr
.call @foo (%ptr): (!ptr.ptr) -> ()

Bare ptr convention



ptr: performance impacts

e Test description:
o  Synthetic test with 100k operations
converting memref to LLVM IR
e <3%LLVM translation
performance impact

Test Metric Slowdown
Total time 0.9911
Parse and print Text Parser 0.9929
Bytecode Output 0.9859
Total time 1.0003
Bytecode Parser 0.9912
Convert to LLVM Bytecode Output 1.0229
To LLVM 0.9929
Canonicalize 0.9933
Translate to LLVM IR fotal time 1.0219
To LLVMIR 1.0392




Modularizing LLVM Dialect



Modularizing LLVM Dialect

Some dialects are so close to LLVM semantics that they can be directly translated to LLVM IR:
e SCF dialect
e Arith dialect (when not operating on tensors)

e Ptrdialect (when operating on LLVM types)

=> |mportant for JITs: save compile-time by
avoiding unnecessary dialect conversions!



Modularizing LLVM dialect vs new dialects

Modularizing:

e Reduces pipeline complexity:
o No: arith -> [lvm dialect 1:1 conversion

e Help to solve missing abstractions for
programming languages (like the “ptr’
support for other types)

e Support for other target dialects like SPIR-V
or EmitC

e What about divergence with LLVM?
o LLVM-specific operations will be kept in
LLVM Dialect



Modularizing LLVM dialect vs new dialects

Modularizing:

e Reduces pipeline complexity:
o No: arith -> [lvm dialect 1:1 conversion

e Help to solve missing abstractions for
programming languages (like the “ptr’
support for other types)

e Support for other target dialects like SPIR-V
or EmitC

e What about divergence with LLVM?
o LLVM-specific operations will be kept in
LLVM Dialect

New dialects:

Preserves LLVM Dialect as 1-1 mapping
with LLVM IR

Creates redundancy between dialects
o Eg. arith and LLVM
o Cost of documentation and
redefining semantics
o Canonicalizer duplication



What about arith? Can we remove redundancy?

e In most cases Arith and LLVM are

redundant
o Both operate on almost identical set of %a = arith.addi %b, %c overflow<nsw, nuw> : }32
%a = 1lvm.add %b, %c overflow<nsw, nuw> : i32
types

. . Add in arith and LLVM
e Arith cannot be removed without

hurting SPIR-V and EmitC

e What about removing arith ops
from LLVM? ‘ v

Arith lowerings




What about arith? Can we remove redundancy?

e We created a proof of concept
arith translation to LLVM interface
to test performance

e Test description:

o Synthetic test with 600k operations
translating arith + memref + func to
LLVM IR

e arith-> llvmiris 1.5-1.85 faster
than arith -> llvm -> llvmir

Metric Speedup
Convert to LLVM 1.8457
Translate to LLVM IR 0.8845
To-LLVM +
To-LLVMIR AR

Test results




The road ahead/RFC



A proposal for further modularizing/creating dialects

e As with pointers, there are other
primitive types without high-level

dialect support:
o struct
o  arrays

func.func @bar(%x: !ptr, %n: 132) {
%arr = struct.get_member %x[2]:
Istruct<i32, f64, !array<1l@xi8>> -> Iptr

%0ff = array.get_offset !array<1@xi8>[%n] -> i32
[
These types should have %addr = ptr.ptradd %arr, %off: !ptr, 132

non-target dialect support in %char = ptr.load %addr: !ptr -> i8
upstream MLIR ’

' Struct and array
e |n most cases these are dialects dialects

with few operations



A PL dialect collection?

func.func @bar (%n: index) {

$ptr = pl.alloc %n, f32: !ptr
pl.at scope exit {
pl.free %ptr: !ptr
}
A collection of dialects for

representing common programming pl.try
Ianguage prlmltlvesl Surtable to be %exc = pl.runtime exception "runtime error"
emitted from various frontends. pl.throw %exec

} catch(%exc: !pl.exception) ({

PL example



General structured control flow

Programming Languages need early-exit

support: func.func @cf() -> i32 $fn {
gcf.loop %x = %c@ to %n step %cl
e Support should keep IR overhead gcf.if %condl {

gcf.continue $loop
low

gcf.if %cond2 /{

e Control-flow from ops to ancestors HeE Tetun Sin o ine

seems a good tradeoff

e Think of Interfaces to model the }
specifics }

e Impact on analysis? Dominance, etc.

https://discourse.llvm.org/t/rfc-region-based-control-flow-with-early-exits-in-mlir/76998

Generic control-flow

: 132 $loop

[
|


https://discourse.llvm.org/t/rfc-region-based-control-flow-with-early-exits-in-mlir/76998

Target ABI abstraction

ABI abstraction should be a long term

func.func @bar(%param: !struct<i32, i32>)

goal: -> lIstruct<l!array<100xi32>>
attributes {
e Promoting clang ABI handling , target = #x86.target
into MLIR target codegen / mlir-opt --aply-calling-convention
. func.func @bar(%ret: !ref<!struct<!array<l@0xi32>>> {sret},
abstractions. %param: i64)

attributes {
target = #x86.target

e Mirror C type system in MLIR to
implement the itanium C++
calling convention without
requiring clang.

}

Target calling convention
expansion



Questions?



