Clang Modules at Scale

lan Anderson & Michael Spencer
LLVM Dev Meeting 2024



Agenda

10 Years of Modularizing Apple's Platforms
Avoiding Module Pitfalls
Using the Preprocessor with Modules

Building Modules



What are Clang Modules?

Importable interfaces - similar to modules in Swift, C++, Python, etc
Not the same thing as C++20 modules

Designed for Swift to interact with existing C based code

Defined in module map files, comprised of headers

Built as independent translation units



10 Years of Modularizing
Apple’'s Platforms




Modularization History

Original modules were made alongside Swift 1.0
- Most libraries got their own module
- Made big modules for usr/include, clang headers, libc++

- Made compiler kludges to shortcut the header/module map work
Library owners took possession of their modules

Early Swift adopters began using modules



Lessons Learned

Modules can be unintuitive, and have easily hit pitfalls
Header contents and uses are widely varied

Build performance is not a given



Avoiding Module Pitfalls



Module Basics

Modules are precompiled and reused

Modules build as independent translation units

#1nclude statements are translated to module imports

Modules do not inherit the preprocessor environment from the includer

In Swift, the module name is part of the identifier for a declaration



Modularize Headers Bottom-Up

Modular headers can only include other modular headers

Non-modular includes cause a wide variety of confusing bugs
.- #1nclude doesn't seem to do anything
- Type redeclaration errors
- Incompatible type errors

- Other seemingly nonsensical errors



Non-modular Headers

// module.modulemap
module AModule [system] {

module First {
header "first.h"
export x

L

module Second {
header "second.h" // includes non_modular.h

export x

¥
L

// non_modular.h
typedef int non_modular_ t;

// unsuspecting _victim.c
#include <first.h>

#include <non modular.h>
non_modular_ t x; // >¢ unknown type'non modular t°




Modules Must Be Acyclic

Particularly tricky with C Standard Library headers

What looks like a simple #include goes up and down layers

inttypes.h

/,»stdint.h

#include next #include

v
inttypes.h

J

#include next

4
stdint.h



Modules Must Be Acyclic

Originally worked around with compiler and module kludges

Extremely difficult to retroactively fix in this year’s releases

inttypes.h //»stdint.h

#include next #include #include next

inttybes.h /// stdint.h



Make Sure Expected Macros Are Defined

¥ Modules build as independent translation units ¥&

Headers cannot rely on the includer’s preprocessor environment

User provided macros must be passed on the command line

// cool module header.h
#1f EQUIP_ SUNGLASSES
volid be cool(void):
#endif

// client code.c // client code.c

#define EQUIP_SUNGLASSES 1 // clang -DEQUIP_SUNGLASSES=1
#include <cool header.h> #include <cool header.h>

be_cool(); // We'usdenbdred furmgdtd?on be_cool(); // &




One Definition Rule

There can be only one definition of a macro, type, function, etc.

#1fndef would normally get around this requirement, however...

@ Modules build as independent translation units @

// ubrk.h
#1fndef UBRK _TYPEDEF_UBREAK_ITERATOR
#define UBRK_TYPEDEF_UBREAK_ITERATOR
typedef struct UBreakIterator UBreakIterator;

#endif

// ustring.h

#1fndef UBRK _TYPEDEF_UBREAK_ITERATOR
#define UBRK_TYPEDEF_UBREAK_ITERATOR
typedef struct UBreakIterator UBreakIterator;

#endif




#undef can't rewrite headers

#undeTt is sometimes used to fix other headers

<float.h> and <limits.h> in clang do this, but...

£. Modules build as independent translation units .&.

#include next <limits.h>

/* Many system headers try to "help us out" by defining these.
No really, we know how big each datatype is. */
#undef INT_MAX // Doesn't remove the define from the system module

#define INT _MAX _ INT MAX_ _ // > '"INT _MAX' was redeclared



extern "C" {...} can't rewrite headers

Like #undef, extern "C" is often used to fix other headers

Modules build as independent translation units

// bad_header.h

typedef int a_type_ t;

// @ needs to be “extern "C"°
extern a_type_t get _a type(int arg);

// well intentioned header.h

extern "C" { // @ doesn't get affected
#include <bad header.h>

#include <stdatomic.h>

volid print _a type(a_type_t arg);

ks



extern "C" {...} can't rewrite headers

Treated as an error when building modules in C++ mode

Originally worked around with a module kludge



Using the Preprocessor with
Modules



Textual Headers

Headers can be marked textual in a module map
Such headers do not build with their module
Including a textual header does not translate to a module import

Textual headers do NOT build as independent translation units



Dangers of Textual Headers

Similar to non-modular headers
Must not allow declarations to exist in multiple modules

<assert.h> cannot be used by modular headers



X Macro Generators

// LangOptions.def

_ANGOPT (Modules, 1, 0, "modules semantics")
_ANGOPT(CPlusPlusModules, 1, 0, "C++ modules syntax")

_ANGOPT (BuiltinHeadersInSystemModules, 1, ©, "builtin headers ...")

// LangOptions.h

class LangOptions {

public:

#define LANGOPT(Name, Bits, DefaultValue, Description) \
unsigned Name : Bits;

#include "LangOptions.def"

Ly



Private Implementation Headers

Some headers are split up for length
Others are split up for parallel implementation (e.g. arm/x86)

Such headers must have a single includer, and can be marked private
textual



Split Interesting Headers Into Textual and Modular Parts

GCC style <stddef.h> uses __need macros to support partial inclusion
Top level textual header to handle the preprocessor environment

Normal modular header to provide declarations



Example: stddef.h

// stddef.h // module.modulemap
#1f defined(__need _ptrdiff_t) module Builtin_stddef [system] {
#include <__stddef ptrdiff_t.h> textual header "stddef.h"
#undef _ _need ptrdiff_t
#endif explicit module ptrdiff_t {
header " stddef ptrdiff_t.h"
#1f defined(__need_size_ t) export s
#include < stddef size t.h> s
#undef _ need size t explicit module size t {
#endif header " stddef size t.h"
export
ks

h



Building Modules



Module Building Basics

Compiled to on disk PCMs

Contents depend on compiler flags like —target, and =D

Subset of the command line forms the module context hash

PCMs for the same module with differing hashes are called variants

PCMs can only be safely reused between compiles if the hash matches



Initial Solution - Implicitly Built Modules

Modules built by each compiler process when needed
Other processes block while that module builds
Already built modules are independently checked for changes

Common to have different module context hashes across translation
units in large projects

Leads to slower builds due to poor PCM reuse and duplicate work



Initial Issues and Workarounds

Builds are too slow

Cheat and use non-strict module context hashing to get more frequent
reuse

Sacrifices correctness, sometimes manifests as compiler errors

Fixed duplicate validation with build sessions



Time

Q




Time

Q
2
ol © =



Time

)

l

2

Cll
ol
)l (€
7

o o o T

7

] Q@
C;

C;

7

2

)

C:
l?
l?

ks
s
il
il
I

3 (O (O,

=

7
7
l



Better Solution - Explicitly Built Modules

Build system scans for needed modules and builds them up front

Scanning can detect some config differences that don't matter and
remove them

This allows for strict module context hashes
Fixes correctness and many bugs

More precise = more modules built iIn some cases



Time

)

l

2

Cll
ol
)l (€
7

o o o T

7

] Q@
C;

C;

7

2

)

C:
l?
l?

ks
s
il
il
I

3 (O (O,

=

7
7
l



Implicitly discovered, explicitly built Clang modules - Jan Svoboda, Euro LLVM 2022



Time

FHD CHEN 1B B
N 51 G B

BN B

S B B
. =l = B

Implicitly discovered, explicitly built Clang modules - Jan Svoboda, Euro LLVM 2022



Performance

Building a module currently has a large overhead
Lots of variants and small modules decrease scanning performance
Globally unigue config removes variants

Combine headers where they don't create cycles

Single Module Module per Header

G ———



Conclusions

- Modules change how the C preprocessor works
- Header layering should be set before modularizing
. Fixing modularization after client adoption is very difficult

- Modules affect build performance, requires work on the build system
and from clients



TM and © 2024 Apple Inc. All rights reserved.



