
Chris Bieneman

Two Compilers, 
One Language, 
No Specification
Defining a Language from 
Disagreeing References



What is HLSL?

• GPU programming language introduced in 
2002


• Evolved from NVIDIA’s C for Graphics (Cg)


• Mostly used for computer graphics


• Also used in GPGPU and ML applications



State of HLSL

• Reference Compiler #1 - FXC


• Out of active support


• DirectX 9-11 (and early 12)


• HLSL versions 2002->2015


• Reference Compiler #2 - DXC


• Fork of LLVM 3.7


• DirectX 12 Ultimate


• HLSL Versions 2016, 2017, 2018, 2021 & 202x


• 202x & critical support only



The Problem

• We need a modern HLSL compiler


• We have a large base of existing HLSL code


• We have a lot of users that need to 
transition


• We don’t want a bug-for-bug compatible 
replacement


• GPU code portability is a common 
problem


• We need a written specification!



Why do we need a spec?



Same Compiler, Different Results
DirectX stores 1, SPIR-V stores 2



Why isn’t HLSL just C or C++?
TL;DR: (1) History, (2) GPUs are weird

• Early GPUs were very limited


• No direct memory access


• No control flow


• Limited (and strange) data types


• GPU architectures are wildly varied


• GPUs are fundamentally parallel



Similarity: Basic Functions
Reason: HLSL has always been C-like

• HLSL’s C/C++ based syntax for functions looks very familiar


• Basic functions just kinda work how you expect


• HLSL has argument-dependent lookup


• Until they don’t…



Difference: Implementation Inconsistency
Reason: Bugs

• DXC is sometimes inconsistent about overload resolution


• built-in functionality has unintended behavior differences

Error!Error!float(float)float(float)bool(bool)



Solution: Implicit hlsl.h
Functions are functions

• Alias function declarations to builtins


• Go-to-definition works for library functions


• Consistent overload resolution behavior


• This will break existing code


• Socializing this with users



Difference: Vectors all the way down!
Reason: colors, vertices, matrices…

• First class vector types are a requirement


• Vector types need to work with built-in 
operators


• Defined conversion sequences


• Constrain conversions of scalar types… 
because they’re also implicit vectors



SIMT Execution
Single Instruction Multiple Threads

Arr Sz Min Executing?
0 {5, 0, 0, 0} 1 yes
1 {5, 6, 2, 3} 4 yes
2 {9, 6, 0, 0} 2 yes
3 {2, 6, 1, 0} 3 yes



SIMT Execution
Single Instruction Multiple Threads

Arr Sz Min Executing?
0 {5, 0, 0, 0} 1 5 yes
1 {5, 6, 2, 3} 4 5 yes
2 {9, 6, 0, 0} 2 9 yes
3 {2, 6, 1, 0} 3 2 yes



SIMT Execution
Single Instruction Multiple Threads

Arr Sz Min Executing?
0 {5, 0, 0, 0} 1 5 no
1 {5, 6, 2, 3} 4 5 yes
2 {9, 6, 0, 0} 2 9 yes
3 {2, 6, 1, 0} 3 2 yes

I

1



SIMT Execution
Single Instruction Multiple Threads

Arr Sz Min Executing?
0 {5, 0, 0, 0} 1 5 no
1 {5, 6, 2, 3} 4 5 yes
2 {9, 6, 0, 0} 2 6 yes
3 {2, 6, 1, 0} 3 2 yes

I

1



SIMT Execution
Single Instruction Multiple Threads

Arr Sz Min Executing?
0 {5, 0, 0, 0} 1 5 no
1 {5, 6, 2, 3} 4 5 yes
2 {9, 6, 0, 0} 2 6 no
3 {2, 6, 1, 0} 3 2 yes

I

2



SIMT Execution
Single Instruction Multiple Threads

Arr Sz Min Executing?
0 {5, 0, 0, 0} 1 5 no
1 {5, 6, 2, 3} 4 2 yes
2 {9, 6, 0, 0} 2 6 no
3 {2, 6, 1, 0} 3 1 yes

I

2



SIMT Execution
Single Instruction Multiple Threads

Arr Sz Min Executing?
0 {5, 0, 0, 0} 1 5 no
1 {5, 6, 2, 3} 4 2 yes
2 {9, 6, 0, 0} 2 6 no
3 {2, 6, 1, 0} 3 1 no

I

3



SIMT Execution
Single Instruction Multiple Threads

Arr Sz Min Executing?
0 {5, 0, 0, 0} 1 5 no
1 {5, 6, 2, 3} 4 2 yes
2 {9, 6, 0, 0} 2 6 no
3 {2, 6, 1, 0} 3 1 no

I

3



SIMT Execution
Single Instruction Multiple Threads

Arr Sz Min Executing?
0 {5, 0, 0, 0} 1 5 no
1 {5, 6, 2, 3} 4 2 no
2 {9, 6, 0, 0} 2 6 no
3 {2, 6, 1, 0} 3 1 no

I

4



SIMT Execution
Single Instruction Multiple Threads

Arr Sz Min Executing?
0 {5, 0, 0, 0} 1 5 no
1 {5, 6, 2, 3} 4 2 no
2 {9, 6, 0, 0} 2 6 no
3 {2, 6, 1, 0} 3 1 no

I

4



Problem: Hidden Costs

• Each operation happens n times


• Each variable is actually n variables


• Dynamic control flow is always the worst 
of threads



Usual Arithmetic Conversions
Most hated of C features, worse on vectors

• C implicitly promotes to word-sized values


• This is extremely expensive on a GPU!


• HLSL also has vectors of arithmetic types


• We need vector element and dimension 
conversions!



Solution: Constrain and Extend UAC

• Remove “promotable” sub-word types


• Add vector element and dimension conversions


• Aligns with C language, but considers HLSL’s characteristics



Difference: Implicit Dimension Conversion
Reason: Lots of vector types!

• C++ Implicit conversion sequences have 3 
components


• Lvalue Transformation


• Promotion/Conversion


• Qualification Adjustment


• HLSL adds 4th component for dimension 
adjustment


• Extends or truncates dimensionality for scalar, 
vector or matrix types



New Problem: Moar Conversions!

• Immediately complicates overload scoring…


• 3 ranks turns to 9



Difference: Best Match Resolution
Reason: Lineage from Cg

• In C++ all these cases would be 
ambiguous! 


• DXC uses a scoring system


• Disambiguates cases where “worse” 
conversions are present


• Produces unintuitive results


• Scores have a limit



Solution: Define ICS Rules

• Try and align with C++ as much as possible


• Use C++’s better/worse/indistinguishable 


• New behavior _does not_ match DXC


• DXC used a number-based scoring system


• New behavior has more ambiguous cases, but it also handles more cases 
(operator overloads & const-ness)


• Behavior changes that break compiling are preferred!



Difference: No pointers!
Reason: part history, part complexity

• Early GPUs didn’t really have direct 
memory access


• Modern GPU memory has 
fragmented memory spaces


• Pointers and unified memory are 
becoming more common



Problem: Multiple Function Outputs

• HLSL’s inout and out parameter keywords are still passed by value


• This normalizes addresses for parameters to thread-local memory



Complication: Outputs Can Cast?!?!

• HLSL’s output parameters can also have cast



Casting Expiring Values

• cx-values are a spec-level construct only


• Vocabulary for casted temporary values


• x-value with a bound l-value


• may be initialized from an l-value or it may be 
uninitialized


• on expiration it “writes back” to the bound l-value


• it can optionally cast on both initialization and 
write back 



Solution: HLSLOutArgExpr

• New AST node to represent the cx-
value


• Use Parameter ABI type information 
added for Swift


• Leverage call argument write back 
support added for Objective-C


• All casts are represented in the AST!



Difference: literal types
Reason: Low-precision math is fast

• Not unique to HLSL!


• WGSL calls these abstract numeric types


• Allow compile-time expressions to use higher 
precision


• AST-level literals are treated as 64-bit for 
constant evaluation


• Implicitly truncated to a target type… usually



Problem: Unresolved Types

• DXC’s literal handling is extremely complicated!


• Implementation had strange bugs


• C++ isn’t designed for multi-expression type 
inference



Solution: HLSL 202x
Bridge to Clang

• Without a specification we can’t make 
Clang match


• When possible we’re implementing 
breaking changes in DXC


• Fix bugs in DXC and not introduce 
complexity or debt to Clang



Problem: Constraints on Templates
Reason: History

• HLSL for years has had template-like 
syntax for types


• Some built-in types have constraints 
on valid template arguments


• vectors must have arithmetic or 
boolean type


• vector size must be <= 4


• Resource types have rules for 
different types



Solution: A Concept of a Plan

• Built-in types are injected into the AST


• Inject a concept declaration & concept 
specialization


• Avoids needing to add custom checking 
for types in template instantiation


• Concepts are _super_ useful for GPUs!



Path Forward

• Diligence in writing a spec and 
docs


• Creative about how we achieve 
source compatibility


• Considerate about the future of 
the language


• Open and engaging with our 
users



Questions?




