Shardy An MLIR-based Tensor Partitioning System for All Dialects

Bart Chrzaszcz Google DeepMind

Zixuan Jiang Google Core ML

LLVM Developers' Meeting 2024

Background on Al model scaling

Training Generative AI Models

- Generative AI models are large
- They rely on huge matrix multiplications
- They are too large to fit on a single device, let alone host
- Training and serving these models requires distributing them across thousands of devices.
- But how is this distribution achieved?

4x4x8

The Mesh: Physical

- Generative AI models are large
- They rely on huge matrix multiplications
- They are too large to fit on a single device, let alone host
- Training and serving these models requires distributing them across thousands of devices.
- But how is this distribution achieved?

The Mesh: Logical

- Taking the connection speeds across hosts and devices, need to optimize the device order in tensor programs optimally
- Done in the "logical mesh"
- Batch parallelism:
 - Split images/text/examples 0
 - Can parallelize the 0 predictions
- Tensor parallelism:
- Batch Size of the model is too big, 0 split tensors across devices
 - parallel matrix Ο multiplications

Tensor parallelism

The Mesh: Logical

- Taking the connection speeds across hosts and devices, need to optimize the device order in tensor programs optimally
- Done in the "logical mesh"
- Batch parallelism:
 - Split images/text/examples 0
 - Can parallelize the 0 predictions
- Tensor parallelism:
- Batch Size of the model is too big, 0 split tensors across devices

oarallelism

parallel matrix Ο multiplications

The Mesh: Logical

- Taking the connection speeds across hosts and devices, need to optimize the device order in tensor programs optimally
- Done in the "logical mesh"
- Batch parallelism:
 - Split images/text/examples 0
 - Can parallelize the 0 predictions
- Tensor parallelism:
- Batch Size of the model is too big, Ο split tensors across devices

oarallelism

parallel matrix Ο multiplications

Each column shares the same parameters Tensor parallelism

How models are scaled: sharding propagation and partitioning

 Tensor parallelism: calculate 2 matmuls in parallel before all-reducing them together param1: tensor<16x64xf32>


```
mesh @mesh = <"batch"=4, "model"=2>
```

```
func.func public @predict(
  %samples: tensor<4x16xf32>,
 %param1: tensor<16x64xf32>,
  %param2: tensor<64x10xf32>) -> tensor<4x10xf32> {
  %0 = stablehlo.dot general %samples, %param1,
      contracting dims = [1] \times [0]
      : (tensor<4x16xf32>, tensor<16x64xf32>)
         \rightarrow tensor<4x64xf32>
 %1 = stablehlo.dot general %0, %param2,
      contracting dims = [1] \times [0]
      : (tensor<4x64xf32>, tensor<64x10xf32>)
        \rightarrow tensor <4x10xf32>
```

```
return %1 : tensor<4x10xf32>
```

How models are scaled: sharding propagation and partitioning

 Tensor parallelism: calculate 2 matmuls in parallel before all-reducing them together param1: tensor<16x6432xf32> param2: tensor<6432x10xf32>

```
param1: <16x6432xf32>
                              <16x6432xf32>
param2: <64x10xf32>
                              <64x10xf32>
                    Tensor parallelism
        parallelism
        Batch
```

```
mesh @mesh = <"batch"=4, "model"=2>
```

```
func.func public @predict(
  %samples: tensor<4x16xf32>,
  %param1: tensor<16x6432xf32>,
  %param2: tensor<6432x10xf32>) -> tensor<4x10xf32> {
  %0 = stablehlo.dot general %samples, %param1,
      contracting dims = [1] \times [0]
       : (tensor<4x16xf32>, tensor<16x<mark>6432</mark>xf32>)
          -> tensor<4x6432xf32>
  %1 = stablehlo.dot general %0, %param2,
      contracting dims = [1] \times [0]
       : (tensor<4x<mark>6432</mark>xf32>, tensor<<mark>6432</mark>x10xf32>)
         \rightarrow tensor <4x10xf32>
  %2 = stablehlo.all reduce %1 : tensor<4x10xf32>
```

```
return %2 : tensor<4x10xf32>
```


Existing Compiler Systems

Existing Tensor Sharding Propagation Systems

xla::GSPMD

- Sharding attribute based propagation
- No concept of a mesh
- No named axes, only sizes
- Op priority propagation
- How to propagate through ops is hardcoded
- Extensive conflict resolution

PartIR (deprecated)

- Loop based propagation
- Top level mesh
- Axis names

- User/round based propagation (propagate certain sharding around in different order)
- C++ data structure that defines how to propagate through an op
- User priorities to resolve conflicts

Mesh Dialect

- Sharding attribute+op based propagation (inserts explicit sharding ops)
- Top level mesh
- No named axes, only sizes
- No order of propagation (all ops/sharding at once)
- ShardingInterface defining how to propagate through an op
- No conflict resolution?

Existing Tensor Sharding Propagation Systems

xla::GSPMD

- Sharding attribute based propagation
- No concept of a mesh
- No named axes, only sizes
- Op priority propagation
- How to propagate through ops is hardcoded
- Extensive conflict resolution

PartIR (deprecated)

- Loop based propagation
- Top level mesh
- Axis names

- User/round based propagation (propagate certain sharding around in different order)
- C++ data structure that defines how to propagate through an op
- User priorities to resolve conflicts

Mesh Dialect

- Sharding attribute+op based propagation (inserts explicit sharding ops)
- Top level mesh
- No named axes, only sizes
- No order of propagation (all ops/sharding at once)
- ShardingInterface defining how to propagate through an op
- No conflict resolution?

Shardy

- Sharding attribute
 based propagation
 (GSPMD)
- Top level mesh
 (PartIR)
- Axis names (PartIR)
- Op (GSPMD) and user (PartIR) priority propagation
- Various interfaces for propagation (Mesh)
- Conflict resolution
 (GSPMD)

Representation and APIs

Sharding Representation: Overview

- An attribute of operation
- It implies that how the results are partitioned.

```
<@mesh, [{"w", "x"}, {}]>
```

- The sharding is bound to the logical mesh with name @mesh.
- The 1st tensor dimension is sharded along "w" then further along "x".
- The 2nd tensor dimension is replicated.
- The tensor is replicated along "y" and "z".

 $Qmesh = \langle x''=2, y''=4, z''=2, w''=2 \rangle$

```
// shape on each device (local shape) is
tensor<1x8xf32>
%arg0: tensor<4x8xf32> {sdy.sharding = <@mesh,
[{"w", "x"}, {}]>}
```

Sharding Representation: Constraining Axes and Dims

- **Explicitly replicated axes** cannot be used to partition the tensor.
- Implicitly replicated axes can be used to further partition the tensor.
- **Open dimensions** can be further sharded on available axes.
- **Closed dimensions** are fixed and can't be further sharded.

Shardy only propagates **implicitly replicate axes** to **open dimensions**.

@mesh = <"x"=2, "y"=4, "z"=2, "w"=2>

tensor<4x8xf32> {sdy.sharding=<@mesh,</pre>

[{"w"}, # The first dim is closed

{"x", ?}], # The second dim is open

replicated={"y"}>} # explicitly replicated axes

Sharding Representation: User Priorities

- Determine the propagation order -> more user control & better debuggability.
- Example: batch parallelism -> Megatron -> ZeRO.
- Can be attached to dimension shardings.

```
@mesh = <"x"=2, "y"=4, "z"=2>
```

```
%arg0 : tensor<4x8xf32>
{sdy.sharding = <@mesh,[{"x"}p1,{"z"}p0]>}
```

```
%add1 : tensor<4x8xf32>
{sdy.sharding = <@mesh,[{"y"}p0,{"z"}p0]>}
```


Sharding Rule

- Tell Shardy how an operation should be propagated through
- A dimension can decompose into multiple factors
- We propagate shardings
 - Forward propagation (operands -> results)
 - Backward propagation (results -> operands)
 - Sideways propagation (operand A -> operand B, result A -> result B)

```
%dot = stablehlo.dot_general %lhs, %rhs,
    batching_dims = [0] x [0], contracting_dims =
[2] x [1],
    {sdy.sharding rule =
```

<([i, j, 1], [i, 1, k])->([i, j, k])

Similar to einsum notation

einsum notatior

```
(tensor<4x8x32xf32>, tensor<4x32x16xf32>)
-> tensor<4x8x16xf32>
```

```
%reshape = stablehlo.reshape %arg0,

Compound

factors
{
    ([ij, k, 1])->([i, jk, 1])

    {i=2, j=4, k=4, 1=5}>} :

    (tensor<8x4x5xf32>) -> tensor<2x16x5xf32>
}
```

{i=4, j=8, k=16, l=32}>} :

Propagation Algorithm

Propagate shardings along factors

,≯ 	Dimension Shardings		Ť
	Sharding rule	1. Projection	3. Projection
	Factor Shardings	↓ 2. Propagate shardings al	ong factors

Propagate shardings in dot

```
@mesh = <"batch"=4, "tensor"=4>
```

- %lhs sharding [{"batch", ?}, {"tensor", ?}]
- %rhs sharding [{?}, {?}]
- %dot sharding [{?}, {?}]

Step 1. Dimensions -> Factors

```
@mesh = <"batch"=4, "tensor"=4>
```

- %lhs sharding [{"batch", ?}, {"tensor", ?}]
- %rhs sharding [{?}, {?}]
- %dot sharding [{?}, {?}]
- Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

Step 1. Dimensions -> Factors

```
@mesh = <"batch"=4, "tensor"=4>
```

- %lhs sharding [{"batch", ?}, {"tensor", ?}]
- %rhs sharding [{?}, {?}]
- %dot sharding [{?}, {?}]
- Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

	Factor i	Factor j	Factor k
LHS	"batch"	n/a	"tensor"
RHS	n/a		
Result			n/a

Step 2. Propagate shardings along factors

```
@mesh = <"batch"=4, "tensor"=4>
```

- %lhs sharding [{"batch", ?}, {"tensor", ?}]
- %rhs sharding [{?}, {?}]
- %dot sharding [{?}, {?}]
- Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

	Factor i	Factor j	Factor k
LHS	"batch"	<mark>n/a</mark>	"tensor"
RHS	n/a		
Result	"batch"		n/a

Step 2. Propagate shardings along factors

```
@mesh = <"batch"=4, "tensor"=4>
```

- %lhs sharding [{"batch", ?}, {"tensor", ?}]
- %rhs sharding [{?}, {?}]
- %dot sharding [{?}, {?}]
- Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

	Factor i	Factor j	Factor k
LHS	"batch"	n/a	"tensor"
RHS	<mark>n/a</mark>		"tensor"
Result	"batch"		n/a

Step 3. Factors -> Dimensions

• Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

	Factor i	Factor j	Factor k
LHS	"batch"	n/a	"tensor"
RHS	n/a		"tensor"
Result	"batch"		n/a

Step 3. Factors -> Dimensions

• Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

	Factor i	Factor j	Factor k
LHS	"batch"	n/a	"tensor"
RHS	n/a		"tensor"
Result	"batch"		n/a

After propagation

- %lhs sharding [{ "batch", ?}, { "tensor", ?}]
- %rhs sharding [{"tensor", ?}, {?}]
- %dot sharding [{ "batch", ?}, {?}]

Being Dialect Agnostic

Being Dialect Agnostic

Let Shardy be used by any MLIR dialect

- This is a long-term goal with a strategic plan in place.
- Currently Shardy depends on StableHLO.
- We aim to eliminate this dependency to maximize Shardy's flexibility.
- Shardy will provide a variety of interfaces and traits.
- Dialect owners can easily integrate these into their own ops.

Sharding Rules

- Currently: Shardy depends on StableHLO and define sharding rules for each op.
- Future: users of Shardy have ops implement this interface to define their own sharding rules

```
def ShardingRuleOpInterface :
OpInterface<"ShardingRuleOpInterface"> {
  let methods = [
    InterfaceMethod<
      /*desc=*/[{
        Returns the sharding rule of the op.
      }],
      /*retType=*/"mlir::sdy::OpShardingRuleAttr",
      /*methodName=*/"getShardingRule"
    >,
  ];
```

}

Region based ops

- Used for: while loops, case, optimization barriers, region based ops, etc.
- Skipping method details for brevity, talk to us offline :)

def ShardableDataFlowOpInterface : OpInterface<"ShardableDataFlowOpInterface"> { (get|set)BlockArgumentEdgeOwnerShardings; (get|set)OpResultEdgeOwnerShardings; getBlockArgumentEdgeOwners; getOpResultEdgeOwners; getEdgeSources; // ... %0:2 = stablehlo.while(%iterArg = %arg0, %iterArg 2 = %c) : tensor<32x96xf32>, tensor<i32> cond { 11 ... stablehlo.return %3 : tensor<i1> } do { 11 ... stablehlo.return %4, %3 : tensor<32x96xf32>, tensor<i32>

}

Constant splitting

Want unique constants per use for optimal sharding

- Don't want shardings to propagate through a constant due to multiple uses (false dependency)
- Each use can have a different sharding that can propagate in isolation to its own copy of the constant sub-computation.

Shardy users need to define:

- your_dialect.constant -> sdy.constant pass
- sdy::ConstantLike trait, such as iota ops
- mlir::Elementwise trait for element-wise ops like add and multiply
- sdy::ConstantFoldable for ops like slice/broadcast. These ops can technically be calculated at compile time, if all their operands/results are constants.

Op priorities

- GSPMD (and Shardy) defines a pre-registered order of what ops get propagated around first
 - Element-wise -> broadcasts -> matmuls -> ...
- Currently hard coded in Shardy on StableHLO ops
- Plan: tell us in what order (and direction*) to propagate ops

See GSPMD paper for why op priorities are important

* Direction of propagation is sometimes important as well, see the GSPMD paper! Being Dialect Agnostic

As long as you implement the previous interfaces, traits, and pass, **Shardy will be able to work for your dialect!**

Google DeepMind

Debugging

Model Explorer

- powerful graph visualization tool that helps one understand, debug, and optimize ML models
- combines graphics techniques used in 3D game and animation production, adapts them for ML graph rendering

See more at research.google/blog/model-explorer

Trace the shardings

- Given a fully propagated program, how can we determine what caused an SSA value to be sharded?
- Want to know what input/output/intermediat e sharding specified by the user caused an op to be sharded a certain way

Trace the trajectory

Using MLIR Action Tracing

• Execute an action to save metadata about what operand/result caused a Value to be sharded a certain way

Use
 ValueToSourceMap
 data structure to build
 the axis subgraphs.

class SourceShardingAction : public tracing::ActionImpl<SourceShardingAction>

```
public:
```

using Base = tracing::ActionImpl<SourceShardingAction>;

// -----

// -----

```
// Stores a mapping of how an op's result was updated: save which
// operand/result caused the update on which axis
ValueToSourceValueMap valueToSourceValue;
};
```

class SourceShardingHandler {
 // Intercept action and save them per Value for the entire program
 ValueToSourceValueMap valueToSourceValue;
};

```
LogicalResult Propagate::matchAndRewrite(
    Operation* op, PatternRewriter& rewriter) {
    context->executeAction<SourceShardingAction>(
       [&]() {
        updateShardings(...);
       },
        /*IRUnits=*/{...},
        ...);
```


Using Shardy Today

Using Shardy Today

StableHLO Module with Shardy APIs

- Partial operations have sdy.shardings attributes
- Shardy ops, like sdy.sharding_constraint, sdy.manual_computation

Interactive _____ Debugging Tools _____

Shardy Propagation Pipeline

- sdy-propagation-pipeline from sdy_opt (our mlir-opt)
- mlir::sdy::addPropagationPipeline in C++

Propagated StableHLO Module

- All operations have sdy.sharding attributes
- sdy.sharding_constraint -> sdy.reshard. Keep all other Shardy ops

Example: JAX -> Shardy -> XLA

JAX	<pre>JAX can lower to Shardy representations and APIs with: jax.config.update("jax_use_shardy_partitioner", True) jax.lax.with_sharding_constraint(x, NamedSharding(jax.sharding.Mesh, PartitionSpec('data')))</pre>				
Shardy	<pre>sdy.mesh @mesh = <["data"=4, "model"=2]> %0 = sdy.sharding_constraint %arg0 <@mesh, [{"data"}]> : tensor<32xf32> Apply these constraints and propagate shardings.</pre>				
XLA	XLA partitions the exported HLO module and generates machine code. Talk to us in Q&A or offline :) github.com/openxla/xla/tree/main/xla/service/spmd/shardy				

TPUs/GPUs/CPUs

Future Plans

Shardy Partitioner Other ML Frameworks: PyTorch

Bazel + CMake StableHLO -> Dialect Agnostic

Conclusion

Shardy is a new partitioning system.

100% open source

New representations and APIs

Dialect agnostic

Interactive debugging

Google DeepMind

Thank you!

github.com/openxla/shardy

Google DeepMind

Appendix

Background on Al model scaling

How models are scaled: sharding propagation and partitioning

- Global program, nothing partitioned
- 8 total TPUs/GPUs available
 - Reshape into a logical mesh for
 - 4-way data-parallelism
 - 2-way tensor-parallelism


```
mesh @mesh = <"batch"=4, "model"=2>
```

```
func.func public @predict(
    %samples: tensor<16x128xf32>,
    %param1: tensor<128x256xf32>,
    %param2: tensor<256x10xf32>) -> tensor<16x10xf32> {
    %0 = stablehlo.dot_general %samples, %param1,
        contracting_dims = [1] x [0]
        : (tensor<16x128xf32>, tensor<128x256xf32>) -> tensor<16x256xf32>
    %1 = stablehlo.dot_general %0, %param2,
        contracting_dims = [1] x [0]
        : (tensor<16x256xf32>, tensor<256x10xf32>) -> tensor<16x10xf32>
    return %1 : tensor<16x10xf32>
```

How models are scaled: sharding propagation and partitioning

• Batch parallelism: calculate the predictions in parallel


```
mesh @mesh = <"batch"=4, "model"=2>
func.func public @predict(
   %samples: tensor<16x128xf32>,
   %param1: tensor<128x256xf32>,
   %param2: tensor<256x10xf32>) -> tensor<16x10xf32> {
   %0 = stablehlo.dot_general %samples, %param1,
      contracting_dims = [1] x [0]
      : (tensor<16x128xf32>, tensor<128x256xf32>) -> tensor<16x256xf32>
   %1 = stablehlo.dot_general %0, %param2,
      contracting_dims = [1] x [0]
      : (tensor<16x256xf32>, tensor<256x10xf32>) -> tensor<16x10xf32>
   return %1 : tensor<16x10xf32>
```

How models are scaled: sharding propagation and partitioning

• Batch parallelism: calculate the predictions in parallel


```
mesh @mesh = <"batch"=4, "model"=2>
func.func public @predict(
   %samples: tensor<4x128xf32>,
   %param1: tensor<128x256xf32>,
   %param2: tensor<256x10xf32>) -> tensor<4x10xf32> {
   %0 = stablehlo.dot_general %samples, %param1,
      contracting_dims = [1] x [0]
      : (tensor<4x128xf32>, tensor<128x256xf32>) -> tensor<4x256xf32>
%1 = stablehlo.dot_general %0, %param2,
      contracting_dims = [1] x [0]
      : (tensor<4x256xf32>, tensor<256x10xf32>) -> tensor<4x10xf32>
%1 = stablehlo.dot_general %0, %param2,
      contracting_dims = [1] x [0]
      : (tensor<4x256xf32>, tensor<256x10xf32>) -> tensor<4x10xf32>
return %1 : tensor<4x10xf32>
```


Other Ops/Attributes

Sharding Representation: Axis splitting and sub-axes

- A (full) mesh axis can be split into multiple **sub-axes** that can be individually used to shard a dimension or be explicitly replicated.
- To extract a specific sub-axis of size k from a full axis "x" of size n, we effectively reshape the size n (in the mesh) into [m, k, n/(m*k)] and use the 2nd dimension as the sub-axis.

@mesh_x= <"x"=8>

```
%arg0 : tensor<16xf32> {sdy.sharding=<@mesh_x, [{"x"}]>}
```

```
// axis "x" needs to be split into 2 sub-axes
%0 = reshape %arg0
    {sdy.sharding = <[<@mesh_x, [{"x":(1)4}, {"x":(4)2}]>]>}
    : (tensor<16xf32>) -> tensor<4x4xf32>
```

Ops: Sharding Constraints

- Can shard function inputs/outputs.
 - Via MLIR FuncOp arguments and result attributes.
- Can also shard intermediates.
 - Via sdy.sharding_constraint

op.

// GSPMD

```
%43 = mhlo.custom_call @Sharding(%42) {mhlo.sharding =
"{devices=[8,1,4]<=[32] last_tile_dim_replicate}"} :
(tensor<8x8xf32>) -> tensor<8x8xf32>
```

// ~~SDY~~>

sdy.mesh @mesh = <"x"=8, "y"=4> %43 = sdy.sharding_constraint %42 <@mesh, [{"x"}, {}]> : tensor<8x8xf32>

Ops: Shard-As / Shard-Like

• Ops sharing the same group id will adopt the same/similar sharding during propagation. @mesh_xy = <"data"=2, "model"=2>

```
func.func @main(
```

```
%arg0: tensor<8x2xi64>
```

```
{sdy.sharding = #sdy.sharding<@mesh_xy, [{"data"},</pre>
```

```
{"model"}]>})
```

```
-> (tensor<8x2xi64>) {
```

%<mark>0 = s</mark>dy.sharding_group %arg0, group_id=0 : tensor<8x2xi64>

%1 = stablehlo.constant dense<0> : tensor<8x2xi64>

%2 = sdy.sharding_group %1, group_id=0 : tensor<8x2xi64>
return %2 : tensor<8x2xi64>

Ops: Manual Computation

- Enclose a sub-computation that is manually partitioned using a subset of mesh axes.
- The shardings along those manual axes are specified for all inputs and outputs.
- SDY will be allowed to propagate through the body on any non-manual/free, "data" in this case.

Free to propagate through on "data" axis

```
sdy.mesh @mesh = <"data"=4, "model"=2>
```

```
%0 = sdy.manual_computation(%arg0, %arg1)
```

```
out_shardings=[<@mesh, [{?}, {?}], replicated={"model"}>]
```

```
manual_axes={"model"}
```

```
(%arg2: tensor<2x8xf32>, %arg3: tensor<8x32xf32>) {
```

```
%1 = stablehlo.dot_general %arg2, %arg3, contracting_dims =
[1] x [0]
```

```
: tensor<2x32xf32>
```

%2 = stablehlo.all_reduce(%1)

{device groups=...}

User written collective from original Python program

```
sdy.return %2 : tensor<2x32xf32>
```

```
} : (tensor<2x16xf32>, tensor<16x32xf32>) -> tensor<2x32xf32>
```

Ops: Manual Computation

- Enclose a sub-computation that is manually partitioned using a subset of mesh axes.
- The shardings along those manual axes are specified for all inputs and outputs.
- SDY will be allowed to propagate through the body on any non-manual/free,
 "data" in this case.

```
sdv.mesh @mesh = <"data"=4, "model"=2>
\% = sdy.manual computation(%arg0, %arg1)
    in shardings=[<@mesh, [{"data", ?}, {"model", ?}]>,
                  <<u>Qmesh</u>, [{"model", ?}, {?}]>]
    out shardings=[<@mesh, [{"data", ?}, {?}],
                    replicated={"model"}>]
   manual axes={"model"}
    (%arg2: tensor<2x8xf32>, %arg3: tensor<8x32xf32>) {
 %1 = stablehlo.dot general %arg2, %arg3, contracting dims =
[1] x [0]
      {sdy.sharding = <@mesh, [{"data", ?}, {?}]>} :
tensor<2x32xf32>
 %2 = stablehlo.all reduce(%1)
      {device_groups=..., sdy.sharding = <@mesh, [{"data", ?},
{?}]>}
  sdy.return %2 : tensor<2x32xf32>
```

```
} : (tensor<2x16xf32>, tensor<16x32xf32>) -> tensor<2x32xf32>
```

Example: Propagation on Reshape

@mesh = <"x"=4, "y"=4>

%b = reshape %a : (tensor<16x4xf32>) -> tensor<8x8xf32>

- Sharding rule: [ij, k] -> [i, jk], i=8, j=2, k=4
- Sharding of %a: [{"x", "y", ?}, {?}]
- Sharding of %b: [{?}, {?}]

@mesh = <"x"=4, "y"=4>

%b = reshape %a : (tensor<16x4xf32>) -> tensor<8x8xf32>

- Sharding rule: [ij, k] -> [i, jk], i=8, j=2, k=4
- Sharding of %a: [{"x", "y", ?}, {?}]
- Sharding of %b: [{?}, {?}]

	Factor i, size 8	Factor j, size 2	Factor j, size 4
Tensor A	"x", "y":(1)2	"y":(2)4	
Tensor B			

@mesh = <"x"=4, "y"=4>

%b = reshape %a : (tensor<16x4xf32>) -> tensor<8x8xf32>

- Sharding rule: [ij, k] -> [i, jk], i=8, j=2, k=4
- Sharding of %a: [{"x", "y", ?}, {?}]
- Sharding of %b: [{?}, {?}]

	Factor i, size 8	Factor j, size 2	Factor j, size 4
Tensor A	"x", "y":(1)2	"y":(2)4	
Tensor B	"x", "y":(1)2	"y":(2)4	

@mesh = <"x"=4, "y"=4>

%b = reshape %a : (tensor<16x4xf32>) -> tensor<8x8xf32>

- Sharding rule: [ij, k] -> [i, jk], i=8, j=2, k=4
- Sharding of %a: [{"x", "y", ?}, {?}]
- Sharding of %b: [{?}, {?}]

	Factor i, size 8	Factor j, size 2	Factor j, size 4
Tensor A	"x", "y":(1)2	"y":(2)4	
Tensor B	"x", "y":(1)2	"y":(2)4	

After propagation

- Sharding of %a: [{"x", "y", ?}, {?}]
- Sharding of %b: [{"x", "y":(1)2, ?}, {"y":(2)4}]

Conflict Resolution

Conflict resolution

Resolved by user priority

Resolved by operation priority

Resolved by our strategy in a single priority

- Try more and more aggressive strategy
 - Do not resolve any conflicts.
 - Propagate all potential solutions, which does not introduce conflicts.
 - Resolve conflicts across factors, e.g., batch dims -> contracting dims.
 - Resolve conflicts within a factor.

Step 0, beginning state

	FO	F1	F2	F3	Explicitly replicated
ТО	"a", "b", "c"		closed		"d"
T1		"b", "a"		"d"	
T2	closed		"c", "a"		
Т3		closed			
T4	"a", "b", "d"				

Step 1, get axes to propagate

	FO	F1	F2	F3	Explicitly replicated
то	"a", "b", "c"		closed		"d"
T1		"b", "a"		"d"	
T2	closed		"c", "a"		
Т3		closed			
T4	"a", "b", "d"				
Axes to propagate	"a", "b"	"b", "a"	"c", "a"	"d"	"a", "b"

Step 2, propagate the axes

considering conflicts in the factor, ignoring conflicts between factors

	FO	F1	F2	F3	Explicitly replicated
то	"a", "b", "c"	"b", "a"	closed		"d"
T1	"a", "b"	"b", "a"	"c", "a"	"d"	
T2	closed	"b", "a"	"c", "a"	"d"	
Т3	"a", "b"	closed	"c", "a"	"d"	
T4	"a", "b", "d"	"b", "a"	"c", "a"	"d"	
Axes to propagate	"a", "b"	"b", "a"	"c", "a"	"d"	"a", "b"

Step 3, remove conflicts (overlapping axes) between factors

	FO	F1	F2	F3	Explicitly replicated
то	"a", "b", "c"		closed		"d"
T1		"b", "a"	"c"	"d"	
T2	closed	"b"	"c", "a"	"d"	
Т3		closed	"c"	"d"	
T4	"a", "b", "d"		"c"		
Axes to propagate	"a", "b"	"b", "a"	"c", "a"	"d"	"a", "b"

JAX Lowering

JAX -> Shardy

JAX lowers to Shardy representations and APIs

- jax.sharding.Mesh -> sdy.mesh
- jax.sharding.NamedSharding -> sdy.sharding
- jax.lax.with_sharding_constraint -> sdy.sharding_constraint
- jax.experimental.shard_map -> sdy.manual_computation

```
mesh = jax.sharding.Mesh(
    np.reshape(np.array(jax.devices()), (4, 2)),
    ('data', 'model'))
```

```
x = jax.ShapeDtypeStruct((32, 64), jnp.float32)
def f(x):
```

```
return jax.lax.with_sharding_constraint(x,
NamedSharding(mesh, PartitionSpec('data',
PartitionSpec.UNCONSTRAINED)))
```

```
jax.config.update("jax_use_shardy_partitioner", True)
print(jax.jit(f).lower(x).as_text())
```

>

```
module @jit_f attributes {mhlo.num_partitions = 8 : i32,
mhlo.num_replicas = 1 : i32} {
   sdy.mesh @mesh = <["data"=4, "model"=2]>
   func.func public @main(%arg0: tensor<32x64xf32>
   {mhlo.layout_mode = "default"}) -> (tensor<32x64xf32>
   {jax.result_info = "", mhlo.layout_mode = "default"}) {
     %0 = sdy.sharding_constraint %arg0 <@mesh, [{"data"},
   {?}]> : tensor<32x64xf32>
     return %0 : tensor<32x64xf32>
   }
}
```