
Google DeepMind

Shardy
An MLIR-based Tensor Partitioning
System for All Dialects

LLVM Developers’ Meeting 2024

Bart Chrzaszcz
Google DeepMind

Zixuan Jiang
Google Core ML

Google DeepMind

Background on AI
model scaling

Google DeepMind

Training Generative AI Models

● Generative AI models are large
● They rely on huge matrix multiplications
● They are too large to fit on a single device, let

alone host
● Training and serving these models requires

distributing them across thousands of devices.
● But how is this distribution achieved?

Google DeepMind

The Mesh: Physical

Physical TPU
layout

Cross device
parallelism

Cross host parallelism8 devices per
host

● Generative AI models are large
● They rely on huge matrix multiplications
● They are too large to fit on a single device, let

alone host
● Training and serving these models requires

distributing them across thousands of devices.
● But how is this distribution achieved?

Google DeepMind

The Mesh: Logical

● Taking the connection speeds
across hosts and devices, need to
optimize the device order in tensor
programs optimally

● Done in the “logical mesh”
● Batch parallelism:

○ Split images/text/examples
○ Can parallelize the

predictions
● Tensor parallelism:

○ Size of the model is too big,
split tensors across devices

○ parallel matrix
multiplications

Tensor shard
0

Tensor shard
1

Tensor shard
2

B
at

ch

pa
ra

lle
lis

m

Tensor parallelism

Batch 0

Batch 2

Batch 1

Google DeepMind

The Mesh: Logical

Batch 0

Batch 2

Batch 1

Tensor shard
0

Tensor shard
1

Tensor shard
2

B
at

ch

pa
ra

lle
lis

m

Tensor parallelism
0th slice of the model
weights

Third slice of the minibatch

● Taking the connection speeds
across hosts and devices, need to
optimize the device order in tensor
programs optimally

● Done in the “logical mesh”
● Batch parallelism:

○ Split images/text/examples
○ Can parallelize the

predictions
● Tensor parallelism:

○ Size of the model is too big,
split tensors across devices

○ parallel matrix
multiplications

Google DeepMind

The Mesh: Logical

Batch 0

Batch 2

Batch 1

Tensor shard
0

Tensor shard
1

Tensor shard
2

B
at

ch

pa
ra

lle
lis

m

Tensor parallelism

Each row is one model instance, handling the
same micro-batch data

Each column shares the
same parameters

● Taking the connection speeds
across hosts and devices, need to
optimize the device order in tensor
programs optimally

● Done in the “logical mesh”
● Batch parallelism:

○ Split images/text/examples
○ Can parallelize the

predictions
● Tensor parallelism:

○ Size of the model is too big,
split tensors across devices

○ parallel matrix
multiplications

Google DeepMind

mesh @mesh = <"batch"=4, "model"=2>

func.func public @predict(
 %samples: tensor<4x16xf32>,
 %param1: tensor<16x64xf32>,
 %param2: tensor<64x10xf32>) -> tensor<4x10xf32> {
 %0 = stablehlo.dot_general %samples, %param1,
 contracting_dims = [1] x [0]
 : (tensor<4x16xf32>, tensor<16x64xf32>)
 -> tensor<4x64xf32>
 %1 = stablehlo.dot_general %0, %param2,
 contracting_dims = [1] x [0]
 : (tensor<4x64xf32>, tensor<64x10xf32>)
 -> tensor<4x10xf32>
 return %1 : tensor<4x10xf32>
}

● Tensor parallelism: calculate 2 matmuls in
parallel before all-reducing them together

How models are scaled:
sharding propagation and
partitioning

B
at

ch
 p

ar
al

le
lis

m

Tensor parallelism

param1: tensor<16x64xf32>
param2: tensor<64x10xf32>

<16x64xf32>
<64x10xf32>

<16x64xf32>
<64x10xf32>

param1:
param2:

Google DeepMind

● Tensor parallelism: calculate 2 matmuls in
parallel before all-reducing them together

How models are scaled:
sharding propagation and
partitioning

mesh @mesh = <"batch"=4, "model"=2>

func.func public @predict(
 %samples: tensor<4x16xf32>,
 %param1: tensor<16x6432xf32>,
 %param2: tensor<6432x10xf32>) -> tensor<4x10xf32> {
 %0 = stablehlo.dot_general %samples, %param1,
 contracting_dims = [1] x [0]
 : (tensor<4x16xf32>, tensor<16x6432xf32>)
 -> tensor<4x6432xf32>
 %1 = stablehlo.dot_general %0, %param2,
 contracting_dims = [1] x [0]
 : (tensor<4x6432xf32>, tensor<6432x10xf32>)
 -> tensor<4x10xf32>
 %2 = stablehlo.all_reduce %1 : tensor<4x10xf32>
 return %2 : tensor<4x10xf32>
}

B
at

ch
 p

ar
al

le
lis

m

Tensor parallelism

param1: tensor<16x6432xf32>
param2: tensor<6432x10xf32>

<16x6432xf32>
<64x10xf32>

<16x6432xf32>
<64x10xf32>

param1:
param2:

Google DeepMind

Existing Compiler
Systems

Google DeepMind

Mesh Dialect

● Sharding attribute+op
based propagation
(inserts explicit
sharding ops)

● Top level mesh
● No named axes, only

sizes
● No order of

propagation (all
ops/sharding at once)

● ShardingInterface
defining how to
propagate through an
op

● No conflict resolution?

PartIR (deprecated)

● Loop based
propagation

● Top level mesh
● Axis names
● User/round based

propagation
(propagate certain
sharding around in
different order)

● C++ data structure
that defines how to
propagate through
an op

● User priorities to
resolve conflicts

xla::GSPMD

● Sharding attribute
based propagation

● No concept of a
mesh

● No named axes, only
sizes

● Op priority
propagation

● How to propagate
through ops is
hardcoded

● Extensive conflict
resolution

Existing Tensor Sharding Propagation Systems

Google DeepMind

Existing Tensor Sharding Propagation Systems

Shardy

● Sharding attribute
based propagation
(GSPMD)

● Top level mesh
(PartIR)

● Axis names (PartIR)
● Op (GSPMD) and

user (PartIR) priority
propagation

● Various interfaces for
propagation (Mesh)

● Conflict resolution
(GSPMD)

Mesh Dialect

● Sharding attribute+op
based propagation
(inserts explicit
sharding ops)

● Top level mesh
● No named axes, only

sizes
● No order of

propagation (all
ops/sharding at once)

● ShardingInterface
defining how to
propagate through an
op

● No conflict resolution?

PartIR (deprecated)

● Loop based
propagation

● Top level mesh
● Axis names
● User/round based

propagation
(propagate certain
sharding around in
different order)

● C++ data structure
that defines how to
propagate through
an op

● User priorities to
resolve conflicts

xla::GSPMD

● Sharding attribute
based propagation

● No concept of a
mesh

● No named axes, only
sizes

● Op priority
propagation

● How to propagate
through ops is
hardcoded

● Extensive conflict
resolution

Google DeepMind

Representation and
APIs

Google DeepMind

Sharding Representation:
Overview

@mesh = <"x"=2, "y"=4, "z"=2, "w"=2>

// shape on each device (local shape) is
tensor<1x8xf32>
%arg0: tensor<4x8xf32> {sdy.sharding = <@mesh,
[{"w", "x"}, {}]>}

● An attribute of operation
● It implies that how the results are

partitioned.

<@mesh, [{"w", "x"}, {}]>

● The sharding is bound to the logical mesh
with name @mesh.

● The 1st tensor dimension is sharded along
"w" then further along "x".

● The 2nd tensor dimension is replicated.
● The tensor is replicated along "y" and "z".

Google DeepMind

Sharding Representation:
Constraining Axes and Dims

● Explicitly replicated axes cannot be
used to partition the tensor.

● Implicitly replicated axes can be used
to further partition the tensor.

● Open dimensions can be further
sharded on available axes.

● Closed dimensions are fixed and can’t
be further sharded.

Shardy only propagates implicitly replicate
axes to open dimensions.

@mesh = <"x"=2, "y"=4, "z"=2, "w"=2>

tensor<4x8xf32> {sdy.sharding=<@mesh,

 [{"w"}, # The first dim is closed

 {"x", ?}], # The second dim is open

 replicated={"y"}>} # explicitly replicated axes

Google DeepMind

Sharding Representation:
User Priorities

● Determine the propagation order ->
more user control & better
debuggability.

● Example: batch parallelism -> Megatron
-> ZeRO.

● Can be attached to dimension
shardings.

%arg0
[{x}p1, {z}p0]

%arg1
[...]

%add0
[{y}, {z}]

%add1
[{y}p0, {z}p0]

%arg0
[{x}, {z}]

%arg1
[...]

%add0
[{?}, {z}]

%arg2
[...]

%add1
[{y}, {z}]

@mesh = <"x"=2, "y"=4, "z"=2>

%arg0 : tensor<4x8xf32>
{sdy.sharding = <@mesh,[{"x"}p1,{"z"}p0]>}

%add1 : tensor<4x8xf32>
{sdy.sharding = <@mesh,[{"y"}p0,{"z"}p0]>}

%arg2
[...]

Google DeepMind

Sharding Rule

● Tell Shardy how an operation
should be propagated through

● A dimension can decompose into
multiple factors

● We propagate shardings
○ Forward propagation

(operands -> results)
○ Backward propagation

(results -> operands)
○ Sideways propagation

(operand A -> operand B,
result A -> result B)

%dot = stablehlo.dot_general %lhs, %rhs,
 batching_dims = [0] x [0], contracting_dims =
[2] x [1],
 {sdy.sharding_rule =
 <([i, j, l], [i, l, k])->([i, j, k])
 {i=4, j=8, k=16, l=32}>} :
 (tensor<4x8x32xf32>, tensor<4x32x16xf32>)
 -> tensor<4x8x16xf32>

%reshape = stablehlo.reshape %arg0,
 {sdy.sharding_rule = <
 ([ij, k, l])->([i, jk, l])
 {i=2, j=4, k=4, l=5}>} :
 (tensor<8x4x5xf32>) -> tensor<2x16x5xf32>

Similar to
einsum notation

Compound
factors

Google DeepMind

Propagation
Algorithm

Google DeepMind

Propagate shardings along factors

Dimension Shardings

Factor Shardings

Sharding rule 1. Projection 3. Projection

2. Propagate shardings along factors

Google DeepMind

Propagate shardings in dot

@mesh = <"batch"=4, "tensor"=4>

%dot = stablehlo.dot_general %lhs, %rhs, contracting_dims = [1] x [0] :
(tensor<8x32xf32>, tensor<32x16xf32>) -> tensor<8x16xf32>

● %lhs sharding [{“batch”, ?}, {“tensor”, ?}]
● %rhs sharding [{?}, {?}]
● %dot sharding [{?}, {?}]

Google DeepMind

Step 1. Dimensions -> Factors

@mesh = <"batch"=4, "tensor"=4>

%dot = stablehlo.dot_general %lhs, %rhs, contracting_dims = [1] x [0] :
(tensor<8x32xf32>, tensor<32x16xf32>) -> tensor<8x16xf32>

● %lhs sharding [{“batch”, ?}, {“tensor”, ?}]
● %rhs sharding [{?}, {?}]
● %dot sharding [{?}, {?}]
● Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

Google DeepMind

Step 1. Dimensions -> Factors

Factor i Factor j Factor k

LHS “batch” n/a “tensor”

RHS n/a

Result n/a

@mesh = <"batch"=4, "tensor"=4>

%dot = stablehlo.dot_general %lhs, %rhs, contracting_dims = [1] x [0] :
(tensor<8x32xf32>, tensor<32x16xf32>) -> tensor<8x16xf32>

● %lhs sharding [{“batch”, ?}, {“tensor”, ?}]
● %rhs sharding [{?}, {?}]
● %dot sharding [{?}, {?}]
● Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

Google DeepMind

Step 2. Propagate shardings along factors

@mesh = <"batch"=4, "tensor"=4>

%dot = stablehlo.dot_general %lhs, %rhs, contracting_dims = [1] x [0] :
(tensor<8x32xf32>, tensor<32x16xf32>) -> tensor<8x16xf32>

● %lhs sharding [{“batch”, ?}, {“tensor”, ?}]
● %rhs sharding [{?}, {?}]
● %dot sharding [{?}, {?}]
● Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

Factor i Factor j Factor k

LHS “batch” n/a “tensor”

RHS n/a

Result “batch” n/a

Google DeepMind

Step 2. Propagate shardings along factors

@mesh = <"batch"=4, "tensor"=4>

%dot = stablehlo.dot_general %lhs, %rhs, contracting_dims = [1] x [0] :
(tensor<8x32xf32>, tensor<32x16xf32>) -> tensor<8x16xf32>

● %lhs sharding [{“batch”, ?}, {“tensor”, ?}]
● %rhs sharding [{?}, {?}]
● %dot sharding [{?}, {?}]
● Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

Factor i Factor j Factor k

LHS “batch” n/a “tensor”

RHS n/a “tensor”

Result “batch” n/a

Google DeepMind

Step 3. Factors -> Dimensions

● Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

Factor i Factor j Factor k

LHS “batch” n/a “tensor”

RHS n/a “tensor”

Result “batch” n/a

Google DeepMind

Step 3. Factors -> Dimensions

● Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

Factor i Factor j Factor k

LHS “batch” n/a “tensor”

RHS n/a “tensor”

Result “batch” n/a

After propagation
%dot = stablehlo.dot_general %lhs, %rhs, contracting_dims = [1] x [0] :
(tensor<8x32xf32>, tensor<32x16xf32>) -> tensor<8x16xf32>

● %lhs sharding [{“batch”, ?}, {“tensor”, ?}]
● %rhs sharding [{“tensor”, ?}, {?}]
● %dot sharding [{“batch”, ?}, {?}]

Google DeepMind

What if there are conflicts?
Algorithm Hierarchy

Aggressive
Propagation
Resolve conflicts in a single
priority
Talk to us in Q&A or offline :)

3

Basic
Propagation

4

User Priority
Propagation
Batch parallelism -> ZeRO

1

Operation Priority
Propagation

element-wise -> dot

2

Pass Inheritance

Google DeepMind

Being Dialect
Agnostic

Google DeepMind

Being Dialect Agnostic

Let Shardy be used by any MLIR dialect

● This is a long-term goal with a strategic plan in place.
● Currently Shardy depends on StableHLO.
● We aim to eliminate this dependency to maximize

Shardy's flexibility.

● Shardy will provide a variety of interfaces and traits.
● Dialect owners can easily integrate these into their own

ops.

Google DeepMind

def ShardingRuleOpInterface :
OpInterface<"ShardingRuleOpInterface"> {
 let methods = [
 InterfaceMethod<
 /*desc=*/[{
 Returns the sharding rule of the op.
 }],
 /*retType=*/"mlir::sdy::OpShardingRuleAttr",
 /*methodName=*/"getShardingRule"
 >,
];
}

Sharding Rules

● Currently: Shardy
depends on StableHLO
and define sharding rules
for each op.

● Future: users of Shardy
have ops implement this
interface to define their
own sharding rules

Google DeepMind

def ShardableDataFlowOpInterface :
 OpInterface<"ShardableDataFlowOpInterface"> {
 (get|set)BlockArgumentEdgeOwnerShardings;
 (get|set)OpResultEdgeOwnerShardings;
 getBlockArgumentEdgeOwners;
 getOpResultEdgeOwners;
 getEdgeSources;
 // ...
}

%0:2 = stablehlo.while(%iterArg = %arg0, %iterArg_2 = %c)
 : tensor<32x96xf32>, tensor<i32>
 cond {
 // ...
 stablehlo.return %3 : tensor<i1>
} do {
 // ...
 stablehlo.return %4, %3 : tensor<32x96xf32>, tensor<i32>
}

Region based ops

● Used for: while loops,
case, optimization
barriers, region based
ops, etc.

● Skipping method details
for brevity, talk to us
offline :)

https://source.corp.google.com/piper///depot/google3/third_party/openxla/shardy/src/shardy/dialect/sdy/ir/op_interface.td;bpv=1;bpt=1;l=26?q=ShardableDataFlowOpInterface%20f:.td&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=ShardableDataFlowOpInterface&gs=KYTHE%3A%2F%2Fkythe%3A%2F%2Fgoogle3%3Flang%3Dtablegen%3Fpath%3Dthird_party%2Fopenxla%2Fshardy%2Fsrc%2Fshardy%2Fdialect%2Fsdy%2Fir%2Fop_interface.td%23ShardableDataFlowOpInterface
https://source.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/include/mlir/IR/Interfaces.td;rcl=683570253;l=138

Google DeepMind

Constant splitting

Want unique constants per use for optimal sharding

● Don’t want shardings to propagate through a
constant due to multiple uses (false
dependency)

● Each use can have a different sharding that
can propagate in isolation to its own copy of
the constant sub-computation.

Shardy users need to define:

● your_dialect.constant ->
sdy.constant pass

● sdy::ConstantLike trait, such as iota ops
● mlir::Elementwise trait for element-wise

ops like add and multiply
● sdy::ConstantFoldable for ops like

slice/broadcast. These ops can technically be
calculated at compile time, if all their
operands/results are constants.

%cnst

%123 = add %121, %const

%789 = subtract %781, %const

%789 = divide %const, %788

Google DeepMind

Op priorities

● GSPMD (and Shardy) defines a
pre-registered order of what ops get
propagated around first

○ Element-wise -> broadcasts ->
matmuls -> …

● Currently hard coded in Shardy on
StableHLO ops

● Plan: tell us in what order (and
direction*) to propagate ops

See GSPMD paper for why op priorities are important

* Direction of propagation is sometimes important as well, see
the GSPMD paper!

Google DeepMind

Being Dialect Agnostic

As long as you implement the previous
interfaces, traits, and pass, Shardy will
be able to work for your dialect!

Google DeepMind

Debugging

Google DeepMind

● powerful graph visualization tool
that helps one understand, debug,
and optimize ML models

● combines graphics techniques used
in 3D game and animation
production, adapts them for ML
graph rendering

See more at
research.google/blog/model-explorer

Model Explorer

https://research.google/blog/model-explorer/

Google DeepMind

● Given a fully propagated
program, how can we
determine what caused
an SSA value to be
sharded?

● Want to know what
input/output/intermediat
e sharding specified by
the user caused an op to
be sharded a certain way

Trace the shardings
0: <@mesh, [{?}, {“a”}]>
1: <@mesh, [{“a”, ?}, {“b”, ?}]>

<@mesh, [{?}, {“a”, ?}]> <@mesh, [{“a”, ?}, {“b”, ?}]>

0: <@mesh, [{?}, {“b”}]>

0: <@mesh, [{?}, {“b”}]>

0: <@mesh, [{?}, {“b”}]>0: <@mesh, [{?}, {“b”}]>

Where did “a” come
from? Input 0? Input
1?

Where did “b” come
from? Input 1? Output
0?

Google DeepMind

Trace the trajectory

https://docs.google.com/file/d/1GA-n-tnclAjMeIolUoiv-QgxZxWU57Ru/preview?resourcekey=0-owBCQm1cgyj8HQ_2bDFJHQ

Google DeepMind

● Execute an action to
save metadata about
what operand/result
caused a Value to be
sharded a certain way

● Use
ValueToSourceMap
data structure to build
the axis subgraphs.

Using MLIR Action Tracing
class SourceShardingAction : public tracing::ActionImpl<SourceShardingAction>
{
public:
 using Base = tracing::ActionImpl<SourceShardingAction>;

 // Stores a mapping of how an op’s result was updated: save which
 // operand/result caused the update on which axis
 ValueToSourceValueMap valueToSourceValue;
};

// ---

class SourceShardingHandler {
 // Intercept action and save them per Value for the entire program
 ValueToSourceValueMap valueToSourceValue;
};

// ---

LogicalResult Propagate::matchAndRewrite(
 Operation* op, PatternRewriter& rewriter) {
 context->executeAction<SourceShardingAction>(
 [&]() {
 updateShardings(...);
 },
 /*IRUnits=*/{...},
 ...);
}

Google DeepMind

Using Shardy Today

Google DeepMind

Using Shardy Today

StableHLO Module with Shardy APIs
● Partial operations have sdy.shardings attributes
● Shardy ops, like sdy.sharding_constraint, sdy.manual_computation

Shardy Propagation Pipeline
● sdy-propagation-pipeline from sdy_opt (our mlir-opt)
● mlir::sdy::addPropagationPipeline in C++

Propagated StableHLO Module
● All operations have sdy.sharding attributes
● sdy.sharding_constraint -> sdy.reshard. Keep all other Shardy ops

Interactive
Debugging Tools

Google DeepMind

Example: JAX -> Shardy -> XLA

JAX

Shardy

XLA

TPUs/GPUs/CPUs

JAX can lower to Shardy representations and APIs with:
jax.config.update("jax_use_shardy_partitioner", True)

jax.lax.with_sharding_constraint(x, NamedSharding(jax.sharding.Mesh,
PartitionSpec('data')))

XLA partitions the exported HLO module and generates machine code.
Talk to us in Q&A or offline :)

github.com/openxla/xla/tree/main/xla/service/spmd/shardy

sdy.mesh @mesh = <["data"=4, "model"=2]>
%0 = sdy.sharding_constraint %arg0 <@mesh, [{"data"}]> : tensor<32xf32>

Apply these constraints and propagate shardings.

http://github.com/openxla/xla/tree/main/xla/service/spmd/shardy

Google DeepMind

Future Plans

Shardy
Partitioner

Other ML
Frameworks:

PyTorch

Bazel + CMake StableHLO ->
Dialect

Agnostic

Google DeepMind

Conclusion

Shardy is a new partitioning system.

100% open
source

New
representations
and APIs

Dialect agnostic Interactive
debugging

Google DeepMind

Thank you!

github.com/openxla/shardy

https://github.com/openxla/shardy

Google DeepMind

Appendix

Google DeepMind

Background on AI
model scaling

Google DeepMind

mesh @mesh = <"batch"=4, "model"=2>

func.func public @predict(
 %samples: tensor<16x128xf32>,
 %param1: tensor<128x256xf32>,
 %param2: tensor<256x10xf32>) -> tensor<16x10xf32> {
 %0 = stablehlo.dot_general %samples, %param1,
 contracting_dims = [1] x [0]
 : (tensor<16x128xf32>, tensor<128x256xf32>) -> tensor<16x256xf32>
 %1 = stablehlo.dot_general %0, %param2,
 contracting_dims = [1] x [0]
 : (tensor<16x256xf32>, tensor<256x10xf32>) -> tensor<16x10xf32>
 return %1 : tensor<16x10xf32>
 }
}

● Global program, nothing partitioned
● 8 total TPUs/GPUs available

○ Reshape into a logical mesh for
■ 4-way data-parallelism
■ 2-way tensor-parallelism

How models are scaled:
sharding propagation and
partitioning

B
at

ch
 p

ar
al

le
lis

m

Tensor parallelism

%s

am
pl
es
:

te
ns
or

<1
6x

12
8x

f3
2>

s: tensor<16x128xf32>

s: tensor<16x128xf32>

s: tensor<16x128xf32>

s: tensor<16x128xf32>

Google DeepMind

mesh @mesh = <"batch"=4, "model"=2>

func.func public @predict(
 %samples: tensor<16x128xf32>,
 %param1: tensor<128x256xf32>,
 %param2: tensor<256x10xf32>) -> tensor<16x10xf32> {
 %0 = stablehlo.dot_general %samples, %param1,
 contracting_dims = [1] x [0]
 : (tensor<16x128xf32>, tensor<128x256xf32>) -> tensor<16x256xf32>
 %1 = stablehlo.dot_general %0, %param2,
 contracting_dims = [1] x [0]
 : (tensor<16x256xf32>, tensor<256x10xf32>) -> tensor<16x10xf32>
 return %1 : tensor<16x10xf32>
 }
}

● Batch parallelism: calculate the predictions in
parallel

How models are scaled:
sharding propagation and
partitioning

B
at

ch
 p

ar
al

le
lis

m

Tensor parallelism

%s

am
pl
es
:

te
ns
or

<1
6x

12
8x

f3
2>

s: tensor<16x128xf32>

s: tensor<16x128xf32>

s: tensor<16x128xf32>

s: tensor<16x128xf32>

Google DeepMind

mesh @mesh = <"batch"=4, "model"=2>

func.func public @predict(
 %samples: tensor<4x128xf32>,
 %param1: tensor<128x256xf32>,
 %param2: tensor<256x10xf32>) -> tensor<4x10xf32> {
 %0 = stablehlo.dot_general %samples, %param1,
 contracting_dims = [1] x [0]
 : (tensor<4x128xf32>, tensor<128x256xf32>) -> tensor<4x256xf32>
 %1 = stablehlo.dot_general %0, %param2,
 contracting_dims = [1] x [0]
 : (tensor<4x256xf32>, tensor<256x10xf32>) -> tensor<4x10xf32>
 return %1 : tensor<4x10xf32>
 }
}

● Batch parallelism: calculate the predictions in
parallel

How models are scaled:
sharding propagation and
partitioning

%s

am
pl
es
:

te
ns
or

<1
6x

12
8x

f3
2>

B
at

ch
 p

ar
al

le
lis

m

Tensor parallelism

s0: tensor<4x128xf32>

s1: tensor<4x128xf32>

s2: tensor<4x128xf32>

s3: tensor<4x128xf32>

Google DeepMind

Other
Ops/Attributes

Google DeepMind

Sharding Representation:
Axis splitting and sub-axes

● A (full) mesh axis can be split into multiple
sub-axes that can be individually used to
shard a dimension or be explicitly
replicated.

● To extract a specific sub-axis of size k
from a full axis "x" of size n, we effectively
reshape the size n (in the mesh) into [m,
k, n/(m*k)] and use the 2nd dimension as
the sub-axis.

@mesh_x= <"x"=8>

%arg0 : tensor<16xf32> {sdy.sharding=<@mesh_x, [{"x"}]>}

// axis "x" needs to be split into 2 sub-axes
%0 = reshape %arg0
 {sdy.sharding = <[<@mesh_x, [{"x":(1)4}, {"x":(4)2}]>]>}
 : (tensor<16xf32>) -> tensor<4x4xf32>

// axis "x":(1)4 needs to be further split into 2 sub-axes
%1 = reshape %0
 {sdy.sharding = <[<@mesh_x, [{"x":(1)2}, {"x":(2)2},
 {"x":(4)2}]>]>}
 : (tensor<4x4xf32>) -> tensor<2x2x4xf32>

Google DeepMind

Ops: Sharding Constraints

● Can shard function inputs/outputs.
○ Via MLIR FuncOp arguments and

result attributes.
● Can also shard intermediates.

○ Via sdy.sharding_constraint
op.

// GSPMD

%43 = mhlo.custom_call @Sharding(%42) {mhlo.sharding =

"{devices=[8,1,4]<=[32] last_tile_dim_replicate}"} :

(tensor<8x8xf32>) -> tensor<8x8xf32>

// ~~SDY~~>

sdy.mesh @mesh = <"x"=8, "y"=4> %43 = sdy.sharding_constraint

%42 <@mesh, [{"x"}, {}]> : tensor<8x8xf32>

Google DeepMind

Ops: Shard-As / Shard-Like

● Ops sharing the same group
id will adopt the same/similar
sharding during propagation.

@mesh_xy = <"data"=2, "model"=2>

func.func @main(

 %arg0: tensor<8x2xi64>

 {sdy.sharding = #sdy.sharding<@mesh_xy, [{"data"},

 {"model"}]>})

 -> (tensor<8x2xi64>) {

 %0 = sdy.sharding_group %arg0, group_id=0 : tensor<8x2xi64>

 %1 = stablehlo.constant dense<0> : tensor<8x2xi64>

 %2 = sdy.sharding_group %1, group_id=0 : tensor<8x2xi64>

 return %2 : tensor<8x2xi64>

}

Google DeepMind

Ops: Manual Computation

● Enclose a sub-computation that is
manually partitioned using a subset of
mesh axes.

● The shardings along those manual axes
are specified for all inputs and outputs.

● SDY will be allowed to propagate through
the body on any non-manual/free, "data"
in this case.

sdy.mesh @mesh = <"data"=4, "model"=2>

%0 = sdy.manual_computation(%arg0, %arg1)

 in_shardings=[<@mesh, [{?}, {"model", ?}]>,

 <@mesh, [{"model", ?}, {?}]>]

 out_shardings=[<@mesh, [{?}, {?}], replicated={"model"}>]

 manual_axes={"model"}

 (%arg2: tensor<2x8xf32>, %arg3: tensor<8x32xf32>) {

 %1 = stablehlo.dot_general %arg2, %arg3, contracting_dims =

[1] x [0]

 : tensor<2x32xf32>

 %2 = stablehlo.all_reduce(%1)

 {device_groups=...}

 sdy.return %2 : tensor<2x32xf32>

} : (tensor<2x16xf32>, tensor<16x32xf32>) -> tensor<2x32xf32>

Free to propagate through
on "data" axis

User written collective
from original Python
program

Google DeepMind

Ops: Manual Computation

● Enclose a sub-computation
that is manually partitioned
using a subset of mesh axes.

● The shardings along those
manual axes are specified for
all inputs and outputs.

● SDY will be allowed to
propagate through the body
on any non-manual/free,
"data" in this case.

sdy.mesh @mesh = <"data"=4, "model"=2>

%0 = sdy.manual_computation(%arg0, %arg1)

 in_shardings=[<@mesh, [{"data", ?}, {"model", ?}]>,
 <@mesh, [{"model", ?}, {?}]>]

 out_shardings=[<@mesh, [{"data", ?}, {?}],
 replicated={"model"}>]

 manual_axes={"model"}

 (%arg2: tensor<2x8xf32>, %arg3: tensor<8x32xf32>) {

 %1 = stablehlo.dot_general %arg2, %arg3, contracting_dims =
[1] x [0]
 {sdy.sharding = <@mesh, [{"data", ?}, {?}]>} :
tensor<2x32xf32>

 %2 = stablehlo.all_reduce(%1)
 {device_groups=..., sdy.sharding = <@mesh, [{"data", ?},
{?}]>}

 sdy.return %2 : tensor<2x32xf32>

} : (tensor<2x16xf32>, tensor<16x32xf32>) -> tensor<2x32xf32>

Google DeepMind

Example:
Propagation on
Reshape

Google DeepMind

Propagate shardings in reshape

Dimensions Factors
Sharding rule

@mesh = <"x"=4, "y"=4>
%b = reshape %a : (tensor<16x4xf32>) -> tensor<8x8xf32>

● Sharding rule: [ij, k] -> [i, jk], i=8, j=2, k=4
● Sharding of %a: [{"x", "y", ?}, {?}]
● Sharding of %b: [{?}, {?}]

Google DeepMind

Propagate shardings in reshape

@mesh = <"x"=4, "y"=4>
%b = reshape %a : (tensor<16x4xf32>) -> tensor<8x8xf32>

● Sharding rule: [ij, k] -> [i, jk], i=8, j=2, k=4
● Sharding of %a: [{"x", "y", ?}, {?}]
● Sharding of %b: [{?}, {?}]

Factor i, size 8 Factor j, size 2 Factor j, size 4

Tensor A “x”, “y”:(1)2 “y”:(2)4

Tensor B

Dimensions Factors
Sharding rule

Google DeepMind

Propagate shardings in reshape

@mesh = <"x"=4, "y"=4>
%b = reshape %a : (tensor<16x4xf32>) -> tensor<8x8xf32>

● Sharding rule: [ij, k] -> [i, jk], i=8, j=2, k=4
● Sharding of %a: [{"x", "y", ?}, {?}]
● Sharding of %b: [{?}, {?}]

Factor i, size 8 Factor j, size 2 Factor j, size 4

Tensor A “x”, “y”:(1)2 “y”:(2)4

Tensor B “x”, “y”:(1)2 “y”:(2)4

Dimensions Factors
Sharding rule

Google DeepMind

Propagate shardings in reshape

@mesh = <"x"=4, "y"=4>
%b = reshape %a : (tensor<16x4xf32>) -> tensor<8x8xf32>

● Sharding rule: [ij, k] -> [i, jk], i=8, j=2, k=4
● Sharding of %a: [{"x", "y", ?}, {?}]
● Sharding of %b: [{?}, {?}]

Factor i, size 8 Factor j, size 2 Factor j, size 4

Tensor A “x”, “y”:(1)2 “y”:(2)4

Tensor B “x”, “y”:(1)2 “y”:(2)4

After propagation
● Sharding of %a: [{"x", "y", ?}, {?}]
● Sharding of %b: [{“x”, “y”:(1)2, ?}, {“y”:(2)4}]

Dimensions Factors
Sharding rule

Google DeepMind

Conflict Resolution

Google DeepMind

What if there are conflicts?
Algorithm Hierarchy

Aggressive
Propagation
How we resolve conflicts in
a single priority

3

Basic
Propagation

4

User Priority
Propagation
Batch parallelism -> ZeRO

1

Operation Priority
Propagation

element-wise -> dot

2

Pass Inheritance

Google DeepMind

Conflict resolution

Resolved by our strategy in a single priority

Resolved by user priority

Resolved by operation priority

● Try more and more aggressive strategy
○ Do not resolve any conflicts.
○ Propagate all potential solutions, which does not introduce conflicts.
○ Resolve conflicts across factors, e.g., batch dims -> contracting dims.
○ Resolve conflicts within a factor.

Google DeepMind

Step 0, beginning state

F0 F1 F2 F3 Explicitly
replicated

T0 “a”, “b”, “c” closed “d”

T1 “b”, “a” “d”

T2 closed “c”, “a”

T3 closed

T4 “a”, “b”, “d”

Google DeepMind

Step 1, get axes to propagate

F0 F1 F2 F3 Explicitly
replicated

T0 “a”, “b”, “c” closed “d”

T1 “b”, “a” “d”

T2 closed “c”, “a”

T3 closed

T4 “a”, “b”, “d”

Axes to
propagate “a”, “b” “b”, “a” “c”, “a” “d” “a”, “b”

Google DeepMind

Step 2, propagate the axes
considering conflicts in the factor, ignoring conflicts between factors

F0 F1 F2 F3 Explicitly
replicated

T0 “a”, “b”, “c” “b”, “a” closed “d”

T1 “a”, “b” “b”, “a” “c”, “a” “d”

T2 closed “b”, “a” “c”, “a” “d”

T3 “a”, “b” closed “c”, “a” “d”

T4 “a”, “b”, “d” “b”, “a” “c”, “a” “d”

Axes to
propagate “a”, “b” “b”, “a” “c”, “a” “d” “a”, “b”

Google DeepMind

Step 3, remove conflicts (overlapping axes) between factors

F0 F1 F2 F3 Explicitly
replicated

T0 “a”, “b”, “c” closed “d”

T1 “b”, “a” “c” “d”

T2 closed “b” “c”, “a” “d”

T3 closed “c” “d”

T4 “a”, “b”, “d” “c”

Axes to
propagate “a”, “b” “b”, “a” “c”, “a” “d” “a”, “b”

Google DeepMind

JAX Lowering

Google DeepMind

JAX lowers to Shardy representations and APIs

● jax.sharding.Mesh -> sdy.mesh
● jax.sharding.NamedSharding ->

sdy.sharding
● jax.lax.with_sharding_constraint ->

sdy.sharding_constraint
● jax.experimental.shard_map ->

sdy.manual_computation

JAX -> Shardy mesh = jax.sharding.Mesh(
 np.reshape(np.array(jax.devices()), (4, 2)),
 ('data', 'model'))

x = jax.ShapeDtypeStruct((32, 64), jnp.float32)
def f(x):
 return jax.lax.with_sharding_constraint(x,
NamedSharding(mesh, PartitionSpec('data',
PartitionSpec.UNCONSTRAINED)))

jax.config.update("jax_use_shardy_partitioner", True)
print(jax.jit(f).lower(x).as_text())

>
module @jit_f attributes {mhlo.num_partitions = 8 : i32,
mhlo.num_replicas = 1 : i32} {
 sdy.mesh @mesh = <["data"=4, "model"=2]>
 func.func public @main(%arg0: tensor<32x64xf32>
{mhlo.layout_mode = "default"}) -> (tensor<32x64xf32>
{jax.result_info = "", mhlo.layout_mode = "default"}) {
 %0 = sdy.sharding_constraint %arg0 <@mesh, [{"data"},
{?}]> : tensor<32x64xf32>
 return %0 : tensor<32x64xf32>
 }
}

