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model scaling
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Training Generative AI Models

● Generative AI models are large
● They rely on huge matrix multiplications
● They are too large to fit on a single device, let 

alone host
● Training and serving these models requires 

distributing them across thousands of devices.
● But how is this distribution achieved?



Google DeepMind

The Mesh: Physical

Physical TPU 
layout

Cross device 
parallelism

Cross host parallelism8 devices per 
host

● Generative AI models are large
● They rely on huge matrix multiplications
● They are too large to fit on a single device, let 

alone host
● Training and serving these models requires 

distributing them across thousands of devices.
● But how is this distribution achieved?
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The Mesh: Logical

● Taking the connection speeds 
across hosts and devices, need to 
optimize the device order in tensor 
programs optimally

● Done in the “logical mesh”
● Batch parallelism:

○ Split images/text/examples
○ Can parallelize the 

predictions
● Tensor parallelism:

○ Size of the model is too big, 
split tensors across devices

○ parallel matrix 
multiplications
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The Mesh: Logical
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● Taking the connection speeds 
across hosts and devices, need to 
optimize the device order in tensor 
programs optimally

● Done in the “logical mesh”
● Batch parallelism:

○ Split images/text/examples
○ Can parallelize the 

predictions
● Tensor parallelism:

○ Size of the model is too big, 
split tensors across devices

○ parallel matrix 
multiplications
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The Mesh: Logical
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Tensor parallelism

Each row is one model instance, handling the 
same micro-batch data

Each column shares the 
same parameters

● Taking the connection speeds 
across hosts and devices, need to 
optimize the device order in tensor 
programs optimally

● Done in the “logical mesh”
● Batch parallelism:

○ Split images/text/examples
○ Can parallelize the 

predictions
● Tensor parallelism:

○ Size of the model is too big, 
split tensors across devices

○ parallel matrix 
multiplications
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mesh @mesh = <"batch"=4, "model"=2>

func.func public @predict(
  %samples: tensor<4x16xf32>, 
  %param1: tensor<16x64xf32>, 
  %param2: tensor<64x10xf32>) -> tensor<4x10xf32> {
  %0 = stablehlo.dot_general %samples, %param1, 
      contracting_dims = [1] x [0] 
      : (tensor<4x16xf32>, tensor<16x64xf32>) 
         -> tensor<4x64xf32>
  %1 = stablehlo.dot_general %0, %param2,
      contracting_dims = [1] x [0] 
      : (tensor<4x64xf32>, tensor<64x10xf32>) 
        -> tensor<4x10xf32>
  return %1 : tensor<4x10xf32>
}

● Tensor parallelism: calculate 2 matmuls in 
parallel before all-reducing them together

How models are scaled: 
sharding propagation and 
partitioning
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param2: tensor<64x10xf32>
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● Tensor parallelism: calculate 2 matmuls in 
parallel before all-reducing them together

How models are scaled: 
sharding propagation and 
partitioning

mesh @mesh = <"batch"=4, "model"=2>

func.func public @predict(
  %samples: tensor<4x16xf32>, 
  %param1: tensor<16x6432xf32>, 
  %param2: tensor<6432x10xf32>) -> tensor<4x10xf32> {
  %0 = stablehlo.dot_general %samples, %param1, 
      contracting_dims = [1] x [0] 
      : (tensor<4x16xf32>, tensor<16x6432xf32>) 
         -> tensor<4x6432xf32>
  %1 = stablehlo.dot_general %0, %param2,
      contracting_dims = [1] x [0] 
      : (tensor<4x6432xf32>, tensor<6432x10xf32>) 
        -> tensor<4x10xf32>
  %2 = stablehlo.all_reduce %1 : tensor<4x10xf32>
  return %2 : tensor<4x10xf32>
}
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param1: tensor<16x6432xf32>
param2: tensor<6432x10xf32>
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Existing Compiler 
Systems
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Mesh Dialect

● Sharding attribute+op 
based propagation 
(inserts explicit 
sharding ops)

● Top level mesh
● No named axes, only 

sizes
● No order of 

propagation (all 
ops/sharding at once)

● ShardingInterface 
defining how to 
propagate through an 
op

● No conflict resolution?

PartIR (deprecated)

● Loop based 
propagation

● Top level mesh
● Axis names
● User/round based 

propagation 
(propagate certain 
sharding around in 
different order)

● C++ data structure 
that defines how to 
propagate through 
an op 

● User priorities to 
resolve conflicts

xla::GSPMD

● Sharding attribute 
based propagation

● No concept of a 
mesh

● No named axes, only 
sizes

● Op priority 
propagation

● How to propagate 
through ops is 
hardcoded

● Extensive conflict 
resolution 

Existing Tensor Sharding Propagation Systems
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Existing Tensor Sharding Propagation Systems

Shardy

● Sharding attribute 
based propagation 
(GSPMD)

● Top level mesh 
(PartIR)

● Axis names (PartIR)
● Op (GSPMD) and 

user (PartIR) priority  
propagation

● Various interfaces for 
propagation (Mesh)

● Conflict resolution 
(GSPMD)

Mesh Dialect

● Sharding attribute+op 
based propagation 
(inserts explicit 
sharding ops)

● Top level mesh
● No named axes, only 

sizes
● No order of 

propagation (all 
ops/sharding at once)

● ShardingInterface 
defining how to 
propagate through an 
op

● No conflict resolution?

PartIR (deprecated)

● Loop based 
propagation

● Top level mesh
● Axis names
● User/round based 

propagation 
(propagate certain 
sharding around in 
different order)

● C++ data structure 
that defines how to 
propagate through 
an op 

● User priorities to 
resolve conflicts

xla::GSPMD

● Sharding attribute 
based propagation

● No concept of a 
mesh

● No named axes, only 
sizes

● Op priority 
propagation

● How to propagate 
through ops is 
hardcoded

● Extensive conflict 
resolution 
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Representation and 
APIs
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Sharding Representation: 
Overview

@mesh = <"x"=2, "y"=4, "z"=2, "w"=2>

// shape on each device (local shape) is 
tensor<1x8xf32> 
%arg0: tensor<4x8xf32> {sdy.sharding = <@mesh, 
[{"w", "x"}, {}]>}

● An attribute of operation
● It implies that how the results are 

partitioned.

<@mesh, [{"w", "x"}, {}]>

● The sharding is bound to the logical mesh 
with name @mesh.

● The 1st tensor dimension is sharded along 
"w" then further along "x".

● The 2nd tensor dimension is replicated.
● The tensor is replicated along "y" and "z".
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Sharding Representation: 
Constraining Axes and Dims

● Explicitly replicated axes cannot be 
used to partition the tensor.

● Implicitly replicated axes can be used 
to further partition the tensor.

● Open dimensions can be further 
sharded on available axes.

● Closed dimensions are fixed and can’t 
be further sharded.

Shardy only propagates implicitly replicate 
axes to open dimensions.

@mesh = <"x"=2, "y"=4, "z"=2, "w"=2>

tensor<4x8xf32> {sdy.sharding=<@mesh, 

    [{"w"}, # The first dim is closed

     {"x", ?}], # The second dim is open

    replicated={"y"}>} # explicitly replicated axes
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Sharding Representation: 
User Priorities

● Determine the propagation order -> 
more user control & better 
debuggability.

● Example: batch parallelism -> Megatron 
-> ZeRO.

● Can be attached to dimension 
shardings.

%arg0
[{x}p1, {z}p0]

%arg1
[...]

%add0
[{y}, {z}]

%add1
[{y}p0, {z}p0]

%arg0
[{x}, {z}]

%arg1
[...]

%add0
[{?}, {z}]

%arg2
[...]

%add1
[{y}, {z}]

@mesh = <"x"=2, "y"=4, "z"=2>

%arg0 : tensor<4x8xf32> 
{sdy.sharding = <@mesh,[{"x"}p1,{"z"}p0]>}

%add1 : tensor<4x8xf32> 
{sdy.sharding = <@mesh,[{"y"}p0,{"z"}p0]>}

%arg2
[...]
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Sharding Rule

● Tell Shardy how an operation 
should be propagated through

● A dimension can decompose into 
multiple factors

● We propagate shardings 
○ Forward propagation 

(operands -> results)
○ Backward propagation 

(results -> operands)
○ Sideways propagation 

(operand A -> operand B, 
result A -> result B)

%dot = stablehlo.dot_general %lhs, %rhs,
    batching_dims = [0] x [0], contracting_dims = 
[2] x [1],                                    
    {sdy.sharding_rule = 
        <([i, j, l], [i, l, k])->([i, j, k]) 
        {i=4, j=8, k=16, l=32}>} : 
    (tensor<4x8x32xf32>, tensor<4x32x16xf32>) 
    -> tensor<4x8x16xf32>

%reshape = stablehlo.reshape %arg0,
    {sdy.sharding_rule = <
        ([ij, k, l])->([i, jk, l])
        {i=2, j=4, k=4, l=5}>} : 
    (tensor<8x4x5xf32>) -> tensor<2x16x5xf32>

Similar to 
einsum notation

Compound 
factors
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Propagation 
Algorithm
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Propagate shardings along factors

Dimension Shardings

Factor Shardings

Sharding rule 1. Projection 3. Projection

2. Propagate shardings along factors
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Propagate shardings in dot

@mesh = <"batch"=4, "tensor"=4>

%dot = stablehlo.dot_general %lhs, %rhs, contracting_dims = [1] x [0] : 
(tensor<8x32xf32>, tensor<32x16xf32>) -> tensor<8x16xf32>

● %lhs sharding [{“batch”, ?}, {“tensor”, ?}]
● %rhs sharding [{?}, {?}]
● %dot sharding [{?}, {?}]
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Step 1. Dimensions -> Factors

@mesh = <"batch"=4, "tensor"=4>

%dot = stablehlo.dot_general %lhs, %rhs, contracting_dims = [1] x [0] : 
(tensor<8x32xf32>, tensor<32x16xf32>) -> tensor<8x16xf32>

● %lhs sharding [{“batch”, ?}, {“tensor”, ?}]
● %rhs sharding [{?}, {?}]
● %dot sharding [{?}, {?}]
● Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}
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Step 1. Dimensions -> Factors

Factor i Factor j Factor k

LHS “batch” n/a “tensor”

RHS n/a

Result n/a

@mesh = <"batch"=4, "tensor"=4>

%dot = stablehlo.dot_general %lhs, %rhs, contracting_dims = [1] x [0] : 
(tensor<8x32xf32>, tensor<32x16xf32>) -> tensor<8x16xf32>

● %lhs sharding [{“batch”, ?}, {“tensor”, ?}]
● %rhs sharding [{?}, {?}]
● %dot sharding [{?}, {?}]
● Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}
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Step 2. Propagate shardings along factors

@mesh = <"batch"=4, "tensor"=4>

%dot = stablehlo.dot_general %lhs, %rhs, contracting_dims = [1] x [0] : 
(tensor<8x32xf32>, tensor<32x16xf32>) -> tensor<8x16xf32>

● %lhs sharding [{“batch”, ?}, {“tensor”, ?}]
● %rhs sharding [{?}, {?}]
● %dot sharding [{?}, {?}]
● Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

Factor i Factor j Factor k

LHS “batch” n/a “tensor”

RHS n/a

Result “batch” n/a
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Step 2. Propagate shardings along factors

@mesh = <"batch"=4, "tensor"=4>

%dot = stablehlo.dot_general %lhs, %rhs, contracting_dims = [1] x [0] : 
(tensor<8x32xf32>, tensor<32x16xf32>) -> tensor<8x16xf32>

● %lhs sharding [{“batch”, ?}, {“tensor”, ?}]
● %rhs sharding [{?}, {?}]
● %dot sharding [{?}, {?}]
● Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

Factor i Factor j Factor k

LHS “batch” n/a “tensor”

RHS n/a “tensor”

Result “batch” n/a
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Step 3. Factors -> Dimensions

● Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

Factor i Factor j Factor k

LHS “batch” n/a “tensor”

RHS n/a “tensor”

Result “batch” n/a
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Step 3. Factors -> Dimensions

● Sharding rule: [i, k], [k, j]->[i, j], {i=8, j=16, k=32}

Factor i Factor j Factor k

LHS “batch” n/a “tensor”

RHS n/a “tensor”

Result “batch” n/a

After propagation
%dot = stablehlo.dot_general %lhs, %rhs, contracting_dims = [1] x [0] : 
(tensor<8x32xf32>, tensor<32x16xf32>) -> tensor<8x16xf32>

● %lhs sharding [{“batch”, ?}, {“tensor”, ?}]
● %rhs sharding [{“tensor”, ?}, {?}]
● %dot sharding [{“batch”, ?}, {?}]
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What if there are conflicts?
Algorithm Hierarchy

Aggressive 
Propagation
Resolve conflicts in a single 
priority
Talk to us in Q&A or offline :)

3

Basic 
Propagation

4

User Priority 
Propagation
Batch parallelism -> ZeRO

1

Operation Priority 
Propagation

element-wise -> dot

2

Pass Inheritance
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Being Dialect 
Agnostic
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Being Dialect Agnostic

Let Shardy be used by any MLIR dialect

● This is a long-term goal with a strategic plan in place.
● Currently Shardy depends on StableHLO.
● We aim to eliminate this dependency to maximize 

Shardy's flexibility.

● Shardy will provide a variety of interfaces and traits.
● Dialect owners can easily integrate these into their own 

ops.
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def ShardingRuleOpInterface : 
OpInterface<"ShardingRuleOpInterface"> {
  let methods = [
    InterfaceMethod<
      /*desc=*/[{
        Returns the sharding rule of the op.
      }],
      /*retType=*/"mlir::sdy::OpShardingRuleAttr",
      /*methodName=*/"getShardingRule"
    >,
  ];
}

Sharding Rules

● Currently: Shardy 
depends on StableHLO 
and define sharding rules 
for each op.

● Future: users of Shardy 
have ops implement this 
interface to define their 
own sharding rules
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def ShardableDataFlowOpInterface :
    OpInterface<"ShardableDataFlowOpInterface"> {
  (get|set)BlockArgumentEdgeOwnerShardings;
  (get|set)OpResultEdgeOwnerShardings;
  getBlockArgumentEdgeOwners;
  getOpResultEdgeOwners;
  getEdgeSources;
  // ...
}

%0:2 = stablehlo.while(%iterArg = %arg0, %iterArg_2 = %c) 
  : tensor<32x96xf32>, tensor<i32>
  cond {
  // ...
  stablehlo.return %3 : tensor<i1>
} do {
  // ...
  stablehlo.return %4, %3 : tensor<32x96xf32>, tensor<i32>
}

Region based ops

● Used for: while loops, 
case, optimization 
barriers, region based 
ops, etc.

● Skipping method details 
for brevity, talk to us 
offline :) 

https://source.corp.google.com/piper///depot/google3/third_party/openxla/shardy/src/shardy/dialect/sdy/ir/op_interface.td;bpv=1;bpt=1;l=26?q=ShardableDataFlowOpInterface%20f:.td&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=ShardableDataFlowOpInterface&gs=KYTHE%3A%2F%2Fkythe%3A%2F%2Fgoogle3%3Flang%3Dtablegen%3Fpath%3Dthird_party%2Fopenxla%2Fshardy%2Fsrc%2Fshardy%2Fdialect%2Fsdy%2Fir%2Fop_interface.td%23ShardableDataFlowOpInterface
https://source.corp.google.com/piper///depot/google3/third_party/llvm/llvm-project/mlir/include/mlir/IR/Interfaces.td;rcl=683570253;l=138
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Constant splitting

Want unique constants per use for optimal sharding

● Don’t want shardings to propagate through a 
constant due to multiple uses (false 
dependency)

● Each use can have a different sharding that 
can propagate in isolation to its own copy of 
the constant sub-computation.

Shardy users need to define:

● your_dialect.constant -> 
sdy.constant pass

● sdy::ConstantLike trait, such as iota ops
● mlir::Elementwise trait for element-wise 

ops like add and multiply
● sdy::ConstantFoldable for ops like 

slice/broadcast. These ops can technically be 
calculated at compile time, if all their 
operands/results are constants.

%cnst

%123 = add %121, %const

%789 = subtract %781, %const

%789 = divide %const, %788
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Op priorities

● GSPMD (and Shardy) defines a 
pre-registered order of what ops get 
propagated around first

○ Element-wise -> broadcasts -> 
matmuls -> …

● Currently hard coded in Shardy on 
StableHLO ops

● Plan: tell us in what order (and 
direction*) to propagate ops

See GSPMD paper for why op priorities are important

* Direction of propagation is sometimes important as well, see 
the GSPMD paper!
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Being Dialect Agnostic

As long as you implement the previous 
interfaces, traits, and pass, Shardy will 
be able to work for your dialect!
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Debugging
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● powerful graph visualization tool 
that helps one understand, debug, 
and optimize ML models

● combines graphics techniques used 
in 3D game and animation 
production, adapts them for ML 
graph rendering

See more at 
research.google/blog/model-explorer

Model Explorer

https://research.google/blog/model-explorer/
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● Given a fully propagated 
program, how can we 
determine what caused 
an SSA value to be 
sharded?

● Want to know what 
input/output/intermediat
e sharding specified by 
the user caused an op to 
be sharded a certain way

Trace the shardings
0: <@mesh, [{?}, {“a”}]>
1: <@mesh, [{“a”, ?}, {“b”, ?}]>

<@mesh, [{?}, {“a”, ?}]> <@mesh, [{“a”, ?}, {“b”, ?}]>

0: <@mesh, [{?}, {“b”}]>

0: <@mesh, [{?}, {“b”}]>

0: <@mesh, [{?}, {“b”}]>0: <@mesh, [{?}, {“b”}]>

Where did “a” come 
from? Input 0? Input 
1?

Where did “b” come 
from? Input 1? Output 
0?
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Trace the trajectory

https://docs.google.com/file/d/1GA-n-tnclAjMeIolUoiv-QgxZxWU57Ru/preview?resourcekey=0-owBCQm1cgyj8HQ_2bDFJHQ
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● Execute an action to 
save metadata about 
what operand/result 
caused a Value to be 
sharded a certain way

● Use 
ValueToSourceMap 
data structure to build 
the axis subgraphs.

Using MLIR Action Tracing
class SourceShardingAction : public tracing::ActionImpl<SourceShardingAction> 
{
public:
  using Base = tracing::ActionImpl<SourceShardingAction>;

  // Stores a mapping of how an op’s result was updated: save which 
  // operand/result caused the update on which axis
  ValueToSourceValueMap valueToSourceValue;
};

// ---------------------------------------------------

class SourceShardingHandler {
  // Intercept action and save them per Value for the entire program
  ValueToSourceValueMap valueToSourceValue;
};

// ---------------------------------------------------

LogicalResult Propagate::matchAndRewrite(
    Operation* op, PatternRewriter& rewriter) {
  context->executeAction<SourceShardingAction>(
      [&]() {
        updateShardings(...);
      },
      /*IRUnits=*/{...},
      ...);
}
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Using Shardy Today
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Using Shardy Today

StableHLO Module with Shardy APIs
● Partial operations have sdy.shardings attributes
● Shardy ops, like sdy.sharding_constraint, sdy.manual_computation

Shardy Propagation Pipeline
● sdy-propagation-pipeline from sdy_opt (our mlir-opt)
● mlir::sdy::addPropagationPipeline in C++

Propagated StableHLO Module
● All operations have sdy.sharding attributes
● sdy.sharding_constraint -> sdy.reshard. Keep all other Shardy ops

Interactive 
Debugging Tools
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Example: JAX -> Shardy -> XLA

JAX

Shardy

XLA

TPUs/GPUs/CPUs

JAX can lower to Shardy representations and APIs with: 
jax.config.update("jax_use_shardy_partitioner", True)

jax.lax.with_sharding_constraint(x, NamedSharding(jax.sharding.Mesh, 
PartitionSpec('data')))

XLA partitions the exported HLO module and generates machine code.
Talk to us in Q&A or offline :)

github.com/openxla/xla/tree/main/xla/service/spmd/shardy 

sdy.mesh @mesh = <["data"=4, "model"=2]>
%0 = sdy.sharding_constraint %arg0 <@mesh, [{"data"}]> : tensor<32xf32>

Apply these constraints and propagate shardings.

http://github.com/openxla/xla/tree/main/xla/service/spmd/shardy
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Future Plans

Shardy 
Partitioner

Other ML 
Frameworks: 

PyTorch

Bazel + CMake StableHLO -> 
Dialect 

Agnostic
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Conclusion

Shardy is a new partitioning system.

100% open 
source

New 
representations 
and APIs

Dialect agnostic Interactive 
debugging
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Thank you!

github.com/openxla/shardy

https://github.com/openxla/shardy
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Appendix
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Background on AI 
model scaling
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mesh @mesh = <"batch"=4, "model"=2>

func.func public @predict(
    %samples: tensor<16x128xf32>, 
    %param1: tensor<128x256xf32>, 
    %param2: tensor<256x10xf32>) -> tensor<16x10xf32> {
    %0 = stablehlo.dot_general %samples, %param1, 
        contracting_dims = [1] x [0] 
        : (tensor<16x128xf32>, tensor<128x256xf32>) -> tensor<16x256xf32>
    %1 = stablehlo.dot_general %0, %param2,
        contracting_dims = [1] x [0] 
        : (tensor<16x256xf32>, tensor<256x10xf32>) -> tensor<16x10xf32>
    return %1 : tensor<16x10xf32>
  }
}

● Global program, nothing partitioned
● 8 total TPUs/GPUs available

○ Reshape into a logical mesh for
■ 4-way data-parallelism
■ 2-way tensor-parallelism

How models are scaled: 
sharding propagation and 
partitioning
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mesh @mesh = <"batch"=4, "model"=2>

func.func public @predict(
    %samples: tensor<16x128xf32>, 
    %param1: tensor<128x256xf32>, 
    %param2: tensor<256x10xf32>) -> tensor<16x10xf32> {
    %0 = stablehlo.dot_general %samples, %param1, 
        contracting_dims = [1] x [0] 
        : (tensor<16x128xf32>, tensor<128x256xf32>) -> tensor<16x256xf32>
    %1 = stablehlo.dot_general %0, %param2,
        contracting_dims = [1] x [0] 
        : (tensor<16x256xf32>, tensor<256x10xf32>) -> tensor<16x10xf32>
    return %1 : tensor<16x10xf32>
  }
}

● Batch parallelism: calculate the predictions in 
parallel

How models are scaled: 
sharding propagation and 
partitioning
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mesh @mesh = <"batch"=4, "model"=2>

func.func public @predict(
    %samples: tensor<4x128xf32>, 
    %param1: tensor<128x256xf32>, 
    %param2: tensor<256x10xf32>) -> tensor<4x10xf32> {
    %0 = stablehlo.dot_general %samples, %param1, 
        contracting_dims = [1] x [0] 
        : (tensor<4x128xf32>, tensor<128x256xf32>) -> tensor<4x256xf32>
    %1 = stablehlo.dot_general %0, %param2,
        contracting_dims = [1] x [0] 
        : (tensor<4x256xf32>, tensor<256x10xf32>) -> tensor<4x10xf32>
    return %1 : tensor<4x10xf32>
  }
}

● Batch parallelism: calculate the predictions in 
parallel

How models are scaled: 
sharding propagation and 
partitioning
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Tensor parallelism

s0: tensor<4x128xf32>

s1: tensor<4x128xf32>

s2: tensor<4x128xf32>

s3: tensor<4x128xf32>
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Other 
Ops/Attributes
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Sharding Representation: 
Axis splitting and sub-axes

● A (full) mesh axis can be split into multiple 
sub-axes that can be individually used to 
shard a dimension or be explicitly 
replicated.

● To extract a specific sub-axis of size k 
from a full axis "x" of size n, we effectively 
reshape the size n (in the mesh) into [m, 
k, n/(m*k)] and use the 2nd dimension as 
the sub-axis.

@mesh_x= <"x"=8>

%arg0 : tensor<16xf32> {sdy.sharding=<@mesh_x, [{"x"}]>}

// axis "x" needs to be split into 2 sub-axes                 
%0 = reshape %arg0 
    {sdy.sharding = <[<@mesh_x, [{"x":(1)4}, {"x":(4)2}]>]>}
    : (tensor<16xf32>) -> tensor<4x4xf32>

// axis "x":(1)4 needs to be further split into 2 sub-axes
%1 = reshape %0 
    {sdy.sharding = <[<@mesh_x, [{"x":(1)2}, {"x":(2)2}, 
                                 {"x":(4)2}]>]>}
    : (tensor<4x4xf32>) -> tensor<2x2x4xf32>
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Ops: Sharding Constraints

● Can shard function inputs/outputs.
○ Via MLIR FuncOp arguments and 

result attributes.
● Can also shard intermediates.

○ Via sdy.sharding_constraint 
op.

// GSPMD

%43 = mhlo.custom_call @Sharding(%42) {mhlo.sharding = 

"{devices=[8,1,4]<=[32] last_tile_dim_replicate}"} : 

(tensor<8x8xf32>) -> tensor<8x8xf32>

// ~~SDY~~>

sdy.mesh @mesh = <"x"=8, "y"=4> %43 = sdy.sharding_constraint 

%42 <@mesh, [{"x"}, {}]> : tensor<8x8xf32>
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Ops: Shard-As / Shard-Like

● Ops sharing the same group 
id will adopt the same/similar 
sharding during propagation.

@mesh_xy = <"data"=2, "model"=2>

func.func @main(

    %arg0: tensor<8x2xi64> 

        {sdy.sharding = #sdy.sharding<@mesh_xy, [{"data"},  

                                                 {"model"}]>})

    -> (tensor<8x2xi64>) {

  %0 = sdy.sharding_group %arg0, group_id=0 : tensor<8x2xi64>

  %1 = stablehlo.constant dense<0> : tensor<8x2xi64>

  %2 = sdy.sharding_group %1, group_id=0 : tensor<8x2xi64>

  return %2 : tensor<8x2xi64>

}
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Ops: Manual Computation

● Enclose a sub-computation that is 
manually partitioned using a subset of 
mesh axes.

● The shardings along those manual axes 
are specified for all inputs and outputs.

● SDY will be allowed to propagate through 
the body on any non-manual/free, "data" 
in this case.

sdy.mesh @mesh = <"data"=4, "model"=2>

%0 = sdy.manual_computation(%arg0, %arg1) 

    in_shardings=[<@mesh, [{?}, {"model", ?}]>, 

                  <@mesh, [{"model", ?}, {?}]>] 

    out_shardings=[<@mesh, [{?}, {?}], replicated={"model"}>] 

    manual_axes={"model"} 

    (%arg2: tensor<2x8xf32>, %arg3: tensor<8x32xf32>) {

  %1 = stablehlo.dot_general %arg2, %arg3, contracting_dims = 

[1] x [0] 

      : tensor<2x32xf32>

  %2 = stablehlo.all_reduce(%1) 

      {device_groups=...}

  sdy.return %2 : tensor<2x32xf32>

} : (tensor<2x16xf32>, tensor<16x32xf32>) -> tensor<2x32xf32>

Free to propagate through 
on "data" axis

User written collective 
from original Python 
program
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Ops: Manual Computation

● Enclose a sub-computation 
that is manually partitioned 
using a subset of mesh axes.

● The shardings along those 
manual axes are specified for 
all inputs and outputs.

● SDY will be allowed to 
propagate through the body 
on any non-manual/free, 
"data" in this case.

sdy.mesh @mesh = <"data"=4, "model"=2>

%0 = sdy.manual_computation(%arg0, %arg1) 

    in_shardings=[<@mesh, [{"data", ?}, {"model", ?}]>, 
                  <@mesh, [{"model", ?}, {?}]>] 

    out_shardings=[<@mesh, [{"data", ?}, {?}],   
                    replicated={"model"}>] 

    manual_axes={"model"} 

    (%arg2: tensor<2x8xf32>, %arg3: tensor<8x32xf32>) {

  %1 = stablehlo.dot_general %arg2, %arg3, contracting_dims = 
[1] x [0] 
      {sdy.sharding = <@mesh, [{"data", ?}, {?}]>} : 
tensor<2x32xf32>

  %2 = stablehlo.all_reduce(%1) 
      {device_groups=..., sdy.sharding = <@mesh, [{"data", ?}, 
{?}]>}

  sdy.return %2 : tensor<2x32xf32>

} : (tensor<2x16xf32>, tensor<16x32xf32>) -> tensor<2x32xf32>
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Example: 
Propagation on 
Reshape
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Propagate shardings in reshape

Dimensions Factors
Sharding rule

@mesh = <"x"=4, "y"=4>
%b = reshape %a : (tensor<16x4xf32>) -> tensor<8x8xf32>

● Sharding rule: [ij, k] -> [i, jk], i=8, j=2, k=4
● Sharding of %a: [{"x", "y", ?}, {?}]
● Sharding of %b: [{?}, {?}]
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Propagate shardings in reshape

@mesh = <"x"=4, "y"=4>
%b = reshape %a : (tensor<16x4xf32>) -> tensor<8x8xf32>

● Sharding rule: [ij, k] -> [i, jk], i=8, j=2, k=4
● Sharding of %a: [{"x", "y", ?}, {?}]
● Sharding of %b: [{?}, {?}]

Factor i, size 8 Factor j, size 2 Factor j, size 4

Tensor A “x”, “y”:(1)2 “y”:(2)4

Tensor B

Dimensions Factors
Sharding rule
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Propagate shardings in reshape

@mesh = <"x"=4, "y"=4>
%b = reshape %a : (tensor<16x4xf32>) -> tensor<8x8xf32>

● Sharding rule: [ij, k] -> [i, jk], i=8, j=2, k=4
● Sharding of %a: [{"x", "y", ?}, {?}]
● Sharding of %b: [{?}, {?}]

Factor i, size 8 Factor j, size 2 Factor j, size 4

Tensor A “x”, “y”:(1)2 “y”:(2)4

Tensor B “x”, “y”:(1)2 “y”:(2)4

Dimensions Factors
Sharding rule
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Propagate shardings in reshape

@mesh = <"x"=4, "y"=4>
%b = reshape %a : (tensor<16x4xf32>) -> tensor<8x8xf32>

● Sharding rule: [ij, k] -> [i, jk], i=8, j=2, k=4
● Sharding of %a: [{"x", "y", ?}, {?}]
● Sharding of %b: [{?}, {?}]

Factor i, size 8 Factor j, size 2 Factor j, size 4

Tensor A “x”, “y”:(1)2 “y”:(2)4

Tensor B “x”, “y”:(1)2 “y”:(2)4

After propagation
● Sharding of %a: [{"x", "y", ?}, {?}]
● Sharding of %b: [{“x”, “y”:(1)2, ?}, {“y”:(2)4}]

Dimensions Factors
Sharding rule
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Conflict Resolution
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What if there are conflicts?
Algorithm Hierarchy

Aggressive 
Propagation
How we resolve conflicts in 
a single priority

3

Basic 
Propagation

4

User Priority 
Propagation
Batch parallelism -> ZeRO

1

Operation Priority 
Propagation

element-wise -> dot

2

Pass Inheritance
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Conflict resolution

Resolved by our strategy in a single priority

Resolved by user priority

Resolved by operation priority

● Try more and more aggressive strategy
○ Do not resolve any conflicts.
○ Propagate all potential solutions, which does not introduce conflicts.
○ Resolve conflicts across factors, e.g., batch dims -> contracting dims.
○ Resolve conflicts within a factor.
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Step 0, beginning state

F0 F1 F2 F3 Explicitly
replicated

T0 “a”, “b”, “c” closed “d”

T1 “b”, “a” “d”

T2 closed “c”, “a”

T3 closed

T4 “a”, “b”, “d”



Google DeepMind

Step 1, get axes to propagate

F0 F1 F2 F3 Explicitly
replicated

T0 “a”, “b”, “c” closed “d”

T1 “b”, “a” “d”

T2 closed “c”, “a”

T3 closed

T4 “a”, “b”, “d”

Axes to 
propagate “a”, “b” “b”, “a” “c”, “a” “d” “a”, “b”
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Step 2, propagate the axes
considering conflicts in the factor, ignoring conflicts between factors

F0 F1 F2 F3 Explicitly
replicated

T0 “a”, “b”, “c” “b”, “a” closed “d”

T1 “a”, “b” “b”, “a” “c”, “a” “d”

T2 closed “b”, “a” “c”, “a” “d”

T3 “a”, “b” closed “c”, “a” “d”

T4 “a”, “b”, “d” “b”, “a” “c”, “a” “d”

Axes to 
propagate “a”, “b” “b”, “a” “c”, “a” “d” “a”, “b”
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Step 3, remove conflicts (overlapping axes) between factors

F0 F1 F2 F3 Explicitly
replicated

T0 “a”, “b”, “c” closed “d”

T1 “b”, “a” “c” “d”

T2 closed “b” “c”, “a” “d”

T3 closed “c” “d”

T4 “a”, “b”, “d” “c”

Axes to 
propagate “a”, “b” “b”, “a” “c”, “a” “d” “a”, “b”
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JAX Lowering
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JAX lowers to Shardy representations and APIs

● jax.sharding.Mesh -> sdy.mesh
● jax.sharding.NamedSharding -> 

sdy.sharding
● jax.lax.with_sharding_constraint -> 

sdy.sharding_constraint
● jax.experimental.shard_map -> 

sdy.manual_computation

JAX -> Shardy mesh = jax.sharding.Mesh(
    np.reshape(np.array(jax.devices()), (4, 2)),
    ('data', 'model'))

x = jax.ShapeDtypeStruct((32, 64), jnp.float32)
def f(x):
  return jax.lax.with_sharding_constraint(x, 
NamedSharding(mesh, PartitionSpec('data', 
PartitionSpec.UNCONSTRAINED)))

jax.config.update("jax_use_shardy_partitioner", True)
print(jax.jit(f).lower(x).as_text())

>
module @jit_f attributes {mhlo.num_partitions = 8 : i32, 
mhlo.num_replicas = 1 : i32} {
  sdy.mesh @mesh = <["data"=4, "model"=2]>
  func.func public @main(%arg0: tensor<32x64xf32> 
{mhlo.layout_mode = "default"}) -> (tensor<32x64xf32> 
{jax.result_info = "", mhlo.layout_mode = "default"}) {
    %0 = sdy.sharding_constraint %arg0 <@mesh, [{"data"}, 
{?}]> : tensor<32x64xf32>
    return %0 : tensor<32x64xf32>
  }
}


