
Floating Point in LLVM:
the Good, the Bad, and the Absent
Joshua Cranmer

Intel ConfidentialDepartment or Event Name 2LLVM Dev Meeting 2024 2

What are the LLVM FP
semantics?
IEEE-754*

*Except for NaN handling, sNaN support, exceptions, traps, environment,
denormal support, fast-math, hardware precision,
errno, math functions, low precision, rounding mode,

Intel ConfidentialDepartment or Event Name 3LLVM Dev Meeting 2024 3

IEEE 754 is insufficient

• Not all types are IEEE-754 compliant

• IEEE 754 is underdefined at times (e.g., NaN payload)

• Hardware often deviates from the standard
• Denormal flushing, lower precision operations

• Some deviations are extensions, some are not

• Shared, hidden, mostly unused global state bad for optimization

• Users sometime want speed over correctness (-ffast-math)

Intel ConfidentialDepartment or Event Name 4LLVM Dev Meeting 2024 444

Hardware constraints

Intel ConfidentialDepartment or Event Name 5LLVM Dev Meeting 2024 5

Hardware: denormal flushing

• Usually expressed as two independent flags:
• DAZ: Input denormals are treated as (signed) zero

• FTZ: Tiny outputs are flushed to (signed) zero

• Note: tiny output isn’t the same as denormal output
• Different hardware has different definitions of “tiny”!

• Some hardware allows denormal flushing on per-type basis

• Some hardware mandates denormal flushing

• -ffast-math sometimes enables process-wide denormal flushing

Intel ConfidentialDepartment or Event Name 6LLVM Dev Meeting 2024 6

Hardware: x87 FPU

• Only supports x86_fp80 types in operation

• Supports load + fpext/fptrunc + store for float, double
• This sequence implies quieting of sNaNs in both directions

• x86_fp80 is not sufficient to emulate double arithmetic
• Induces double rounding

• Additional exotic bit: precision control
• If set to the appropriate value, can be used to emulate double arithmetic

• Current lowering for x87 implementation is known to be incorrect

Intel ConfidentialDepartment or Event Name 7LLVM Dev Meeting 2024 7

Hardware: FP environment

• IEEE 754 defines rounding modes, exceptions
• Underflow exception has two possible different implementations

• Default exception behavior is to set sticky bits

• Some hardware provides extra exceptions

• Most hardware provides optional trapping on exceptions

• Denormal handling bits

• Exotic bits
• MIPS NAN2008: controls layout of sNaN/qNaN

• X87 Precision Control: adjusts precision (but not range) of operations

• Arm Default NaN: disables NaN payload propagation

Intel ConfidentialDepartment or Event Name 8LLVM Dev Meeting 2024 8

Hardware: operations

• IEEE 754 defines a suite of core arithmetic operations
• +, -, *, /, sqrt, fma, conversions, comparisons nearly universal in hardware

• IEEE 754 also has a suite of additional arithmetic operations
• Examples: exp, pow, atan

• Occasionally implemented in hardware (at possibly low precision)

• Non-IEEE 754 functions can sometimes be found in hardware
• Complex multiply, dot product, etc.

• Low precision operations (reciprocal, rsqrt)

• Static rounding mode operations increasingly prevalent

Intel ConfidentialDepartment or Event Name 9LLVM Dev Meeting 2024 999

LLVM Semantics

Intel ConfidentialDepartment or Event Name 10LLVM Dev Meeting 2024 10

The good parts of floating-point semantics

• LLVM’s floating-point types have well-defined formats

• Non-floating-point operations have well-specified behavior
• load, store, phi, etc. do not change the bit pattern of values

• fabs, fneg, fcopysign effectively integer operations on the sign bits

• NaN payload behavior now specified (~weak propagation)

• sNaN not guaranteed to be quieted

• Usually FP values are precisely that guaranteed by IEEE 754
• Optimizations can’t change precision by default

• Excess precision (x87 behavior) not allowed

Intel ConfidentialDepartment or Event Name 11LLVM Dev Meeting 2024 11

LLVM and the FP environment

• LLVM assumes the FP environment is unused
• All control bits are assumed to be default values, UB if not

• Exception sticky bits are unspecified values

• Approximately #pragma STDC FENV_ACCESS OFF rules

• This allows FP operations to be speculated or removed freely

• The strictfp attribute on function overrides this assumption
• ... but what are the semantics of instructions in this?

• Denormal flushing instead uses denormal-fp-math attribute
• … but this isn’t consistently correctly set by frontends

• Can’t describe environment changes mid-function

Intel ConfidentialDepartment or Event Name 12LLVM Dev Meeting 2024 12

Constrained intrinsics

• Design goal is to strongly disable optimizations by default

• Replace FP operations in strictfp functions

• Has hints for expected rounding mode, exception behavior

• Can’t mix constrained intrinsics and regular FP instructions

%val = call half @llvm.experimental.constrained.fadd.f16(
 half %x, half %y,
 metadata !"round.tonearest",
 metadata !"fpexcept.maytrap")

Intel ConfidentialDepartment or Event Name 13LLVM Dev Meeting 2024 13

Constrained intrinsics – failed experiment?

• They’re experimental… has the experiment failed?

• Requires duplication of every intrinsic
• We don’t have duplicates for target-specific intrinsics

• Combinatorial explosion when vector predication intrinsics exist

• Also requires duplication of every pattern that can match

• Inflexible for extending to more FP environment bits

• Tentative consensus that we want to use operand bundles

%val = call half @llvm.log.f16(half %x)
 ["fpe.except"(i32 0), "fpe.round"(i32 1)]

Intel ConfidentialDepartment or Event Name 14LLVM Dev Meeting 2024 14

Math library functions

• Main set of library functions ultimately derived from IEEE 754

• IEEE 754 requires they be correctly rounded; C doesn’t
• In practice, few libraries correctly round

• Most libraries will return different results for same inputs

• In LLVM, can be C name (logf) or LLVM intrinsic (llvm.log.f32)
• Recall that C long double maps to potentially 1 of 4 LLVM types

• Intrinsics defined as equivalent to libm without exceptions/errno

Intel ConfidentialDepartment or Event Name 15LLVM Dev Meeting 2024 15

Math library functions – issues

• We happily constant fold intrinsics, which changes results

• Codegen often lowers intrinsics to libm, which may set errno!

• Patterns only match either the C or the LLVM functions

• When are we allowed to apply mathematical identities?
• Can we say sin(-x) == -sin(x)?

• Can we say sin(0.0) == 0.0?

• Can we say sin(x) / cos(x) == tan(x) under -ffast-math? Which flags?

Intel ConfidentialDepartment or Event Name 16LLVM Dev Meeting 2024 16

Fast-math

• Mostly specified via orthogonal flags on instructions
• Except floating-point conversions

• Also via function attributes (mostly used by codegen)

• Slowly working my way through better semantics of existing flags

• We need more flag bits (reassoc enables too much)

• Existing optimizations don’t follow rules

Intel ConfidentialDepartment or Event Name 17LLVM Dev Meeting 2024 17

LLVM FP Semantics Scorecard

Feature Grade Issues

FP types A

Value semantics A- x87 implementation is buggy; silent on noncanonicals

Denormal flushing B- denormal-fp-math unreliable

FP environment C See slide on constrained intrinsics

Math library C See slide on math library

Fast-math C- Incorrect optimizations, insufficient flags, poorly specified

Low-precision approximations D Not really implemented

Static rounding mode operations F Not implemented

Intel ConfidentialDepartment or Event Name 18LLVM Dev Meeting 2024 181818

Backup

Intel ConfidentialDepartment or Event Name 19LLVM Dev Meeting 2024 19

LLVM floating point types

• half, float, double, fp128: IEEE-754 format types

• bfloat: fully describable with IEEE-754 format parameters

• x86_fp80: integer bit is explicit instead of implicit
• But generally required by the other 79 bits to be a particular value!

• Introduces noncanonical value representations

• ppc_fp128: pair of IEEE-754 double values
• Cannot be directly modeled with IEEE-754 semantics

Intel ConfidentialDepartment or Event Name 20LLVM Dev Meeting 2024 20

Noncanonical values

• Noncanonical value is an alternative representation for a value

• x86_fp80, ppc_fp128, IEEE 754 decimal FP types have them

• Denormal flushing ~ denormals are noncanonical zeros

• LLVM’s semantics say nothing about them

• Best behavior probably like sNaN:
don’t guarantee that regular operations canonicalize values

• Leverage llvm.canonicalize for guaranteed canonicalization

	Slide 1: Floating Point in LLVM: the Good, the Bad, and the Absent
	Slide 2
	Slide 3: IEEE 754 is insufficient
	Slide 4: Hardware constraints
	Slide 5: Hardware: denormal flushing
	Slide 6: Hardware: x87 FPU
	Slide 7: Hardware: FP environment
	Slide 8: Hardware: operations
	Slide 9: LLVM Semantics
	Slide 10: The good parts of floating-point semantics
	Slide 11: LLVM and the FP environment
	Slide 12: Constrained intrinsics
	Slide 13: Constrained intrinsics – failed experiment?
	Slide 14: Math library functions
	Slide 15: Math library functions – issues
	Slide 16: Fast-math
	Slide 17: LLVM FP Semantics Scorecard
	Slide 18: Backup
	Slide 19: LLVM floating point types
	Slide 20: Noncanonical values

