—loating Point in LLVM:
the Good, the Bad, and the Absent

Joshua Cranmer

intel.



What arethe LLVM FP
semantics”?

IEEE-/54*

NaN handling, sNaN su

*Exce pt fOr denorra suppor+\'l U(\eed
anen

gmd

LLVM Dev Meeting 2024 intel. 2



IEEE /54 is insufficient

* Not all types are IEEE-754 compliant
» |IEEE 754 is underdefined at times (e.g., NaN payload)

= Hardware often deviates from the standard
* Denormal flushing, lower precision operations
= Some deviations are extensions, some are not

» Shared, hidden, mostly unused global state bad for optimization
= Users sometime want speed over correctness (-ffast-math)

LLVM Dev Meeting 2024

intel.

3



Hardware constraints

LLVM Dev Meeting 2024 intel. 4



Hardware: denormal flushing

» Usually expressed as two independent flags:
» DAZ: Input denormals are treated as (signed) zero
= FTZ: Tiny outputs are flushed to (signed) zero

* Note: tiny outputisn’t the same as denormal output
» Different hardware has different definitions of “tiny”!

» Some hardware allows denormal flushing on per-type basis
* Some hardware mandates denormal flushing
= -ffast-math sometimes enables process-wide denormal flushing

LLVM Dev Meeting 2024

intel.

5



Hardware: x8/ FPU

* Only supports x86_fp8e types in operation

= Supports load + fpext/fptrunc + store for float, double
* Thissequence implies quieting of sNaNs in both directions

= x86_fp80 is not sufficient to emulate double arithmetic
* Induces double rounding

» Additional exotic bit: precision control
= |f set to the appropriate value, can be used to emulate double arithmetic

» Current lowering for x87 implementation is known to be incorrect

LLVM Dev Meeting 2024 intel.

6



Hardware: FP environment

» [EEE 754 defines rounding modes, exceptions
» Underflow exception has two possible different implementations
* Default exception behavioris to set sticky bits

Some hardware provides extra exceptions
» Most hardware provides optional trapping on exceptions
* Denormal handling bits

» Exotic bits

= MIPS NAN2008: controls layout of sNaN/gNaN

= X87 Precision Control: adjusts precision (but not range) of operations
= Arm Default NaN: disables NaN payload propagation

LLVM Dev Meeting 2024

intel.

7



Hardware: operations

* [EEE /54 defines a suite of core arithmetic operations
= + - %/, sqgrt, fma, conversions, comparisons nearly universal in hardware

* |EEE /754 also has a suite of additional arithmetic operations
= Examples: exp, pow, atan
= Occasionally implemented in hardware (at possibly low precision)

= Non-IEEE /54 functions can sometimes be found in hardware
= Complex multiply, dot product, etc.

= Low precision operations (reciprocal, rsgrt)
= Static rounding mode operations increasingly prevalent

LLVM Dev Meeting 2024

intel.

8



L LVM Semantics

LLVM Dev Meeting 2024 intel. °



The good parts of floating-point semantics

* LLVM's floating-point types have well-defined formats

* Non-floating-point operations have well-specified behavior
* load, store, phi, etc. do not change the bit pattern of values
= fabs, fTneg, fcopysign effectively integer operations on the sign bits

= NaN payload behavior now specified (~weak propagation)
» sNaN not guaranteed to be quieted

» Usually FP values are precisely that guaranteed by IEEE /54
» Optimizations can’t change precision by default
= Excess precision (x87 behavior) not allowed

LLVM Dev Meeting 2024 intel.

10



LLVM andthe FP environment

* LLVM assumes the FP environment is unused
= All control bits are assumed to be default values, UB if not
= Exception sticky bits are unspecified values
* Approximately #pragma STDC FENV_ACCESS OFF rules

* This allows FP operations to be speculated or removed freely

* The strictfp attribute on function overrides this assumption
= . butwhat are the semantics of instructions in this?

* Denormal flushing instead uses denormal-fp-math attribute
= .butthisisn’t consistently correctly set by frontends
» Can't describe environment changes mid-function

LLVM Dev Meeting 2024

intel.

n



Constrained intrinsics

» Design goalis to strongly disable optimizations by default
* Replace FP operations in strictfp functions

* Has hints for expected rounding mode, exception behavior
» Can't mix constrained intrinsics and regular FP instructions

%val = call half @llvm.experimental.constrained.fadd.f16(
half %x, half %y,

metadata !"round.tonearest",
metadata !"fpexcept.maytrap")

LLVM Dev Meeting 2024 intel. 12



Constrained intrinsics — failed experiment”?

* They're experimental... has the experiment failed?

* Requires duplication of every intrinsic
* \WWe don't have duplicates for target-specific intrinsics
= Combinatorial explosion when vector predication intrinsics exist

» Also requires duplication of every pattern that can match
* [nflexible for extending to more FP environment bits
* Tentative consensus that we want to use operand bundles

%val = call half @llvm.log.fl6(half %x)
["fpe.except”(i32 0), "fpe.round"(i32 1)]

LLVM Dev Meeting 2024 intel.



Math library functions

* Main set of library functions ultimately derived from [EEE 754

* [EEE /54 requires they be correctly rounded; C doesn't
* In practice, few libraries correctly rouna
= Most libraries will return different results for same inputs

= InLLVM, can be C name (logf) or LLVVM intrinsic (11vm.log.f32)
* Recall that C long double maps to potentially 1of 4 LLVM types

= Intrinsics defined as equivalent to libm without exceptions/ermo

LLVM Dev Meeting 2024 intel.

14



Math library functions —issues

* We happily constant fold intrinsics, which changes results
» Codegen often lowers intrinsics to liom, which may set errno!
» Patterns only match either the C or the LLVM functions

* When are we allowed to apply mathematical identities?
» Canwe say sin(-x) == -sin(x)?
= Canwe say sin(0.0) == 0.07
= Canwe say sin(x) / cos(x) == tan(x) under -ffast-math? \Which flags?

LLVM Dev Meeting 2024 intel.

15



Fast-math

» Mostly specified via orthogonal flags on instructions
* Except floating-point conversions

= Also via function attributes (mostly used by codegen)

= Slowly working my way through better semantics of existing flags
= We need more flag bits (reassoc enables too much)

» Existing optimizations don’t follow rules

LLVM Dev Meeting 2024 intel. 6



LLVM FP Semantics Scorecard

FP types A

Value semantics A- x87 implementation is buggy; silent on noncanonicals
Denormal flushing B- denormal-fp-math unreliable

FP environment C See slide on constrained intrinsics

Math library C See slide on math library

Fast-math C- Incorrect optimizations, insufficient flags, poorly specified
Low-precision approximations D Not really implemented

Static rounding mode operations F Not implemented

LLVM Dev Meeting 2024 intel. 7



Sackup

LLVM Dev Meeting 2024 intel. 8



LLVM floating point types

half, float, double, fp128: IEEE-/54 format types
bfloat: fully describable with IEEE-/54 format parameters

x86_fp8e: integer bitis explicit instead of implicit
* But generally required by the other /79 bits to be a particular value!
* Introduces noncanonical value representations

ppc_fp128: pair of IEEE-754 double values
= Cannot be directly modeled with IEEE-754 semantics

LLVM Dev Meeting 2024 intel.



Noncanonical values

Noncanonical value is an alternative representation for a value
x86_fp80, ppc_fp128, IEEE /54 decimal FP types have them
* Denormal flushing ~ denormals are noncanonical zeros

» | LVM's semantics say nothing about them

» Best behavior probably like sNaN:
don’t guarantee that regular operations canonicalize values

* | everage 11lvm.canonicalize for guaranteed canonicalization

LLVM Dev Meeting 2024 intel.

20



	Slide 1: Floating Point in LLVM: the Good, the Bad, and the Absent
	Slide 2
	Slide 3: IEEE 754 is insufficient
	Slide 4: Hardware constraints
	Slide 5: Hardware: denormal flushing
	Slide 6: Hardware: x87 FPU
	Slide 7: Hardware: FP environment
	Slide 8: Hardware: operations
	Slide 9: LLVM Semantics
	Slide 10: The good parts of floating-point semantics
	Slide 11: LLVM and the FP environment
	Slide 12: Constrained intrinsics
	Slide 13: Constrained intrinsics – failed experiment?
	Slide 14: Math library functions
	Slide 15: Math library functions – issues
	Slide 16: Fast-math
	Slide 17: LLVM FP Semantics Scorecard
	Slide 18: Backup
	Slide 19: LLVM floating point types
	Slide 20: Noncanonical values

