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What are the LLVM FP 
semantics?
IEEE-754*

*Except for NaN handling, sNaN support, exceptions, traps, environment,
denormal support, fast-math, hardware precision,
errno, math functions, low precision, rounding mode,
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IEEE 754 is insufficient

• Not all types are IEEE-754 compliant

• IEEE 754 is underdefined at times (e.g., NaN payload)

• Hardware often deviates from the standard
• Denormal flushing, lower precision operations

• Some deviations are extensions, some are not

• Shared, hidden, mostly unused global state bad for optimization

• Users sometime want speed over correctness (-ffast-math)
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Hardware constraints
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Hardware: denormal flushing

• Usually expressed as two independent flags:
• DAZ: Input denormals are treated as (signed) zero

• FTZ: Tiny outputs are flushed to (signed) zero

• Note: tiny output isn’t the same as denormal output
• Different hardware has different definitions of “tiny”!

• Some hardware allows denormal flushing on per-type basis

• Some hardware mandates denormal flushing

• -ffast-math sometimes enables process-wide denormal flushing
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Hardware: x87 FPU

• Only supports x86_fp80 types in operation

• Supports load + fpext/fptrunc + store for float, double
• This sequence implies quieting of sNaNs in both directions

• x86_fp80 is not sufficient to emulate double arithmetic
• Induces double rounding

• Additional exotic bit: precision control
• If set to the appropriate value, can be used to emulate double arithmetic

• Current lowering for x87 implementation is known to be incorrect
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Hardware: FP environment

• IEEE 754 defines rounding modes, exceptions
• Underflow exception has two possible different implementations

• Default exception behavior is to set sticky bits

• Some hardware provides extra exceptions

• Most hardware provides optional trapping on exceptions

• Denormal handling bits

• Exotic bits
• MIPS NAN2008: controls layout of sNaN/qNaN

• X87 Precision Control: adjusts precision (but not range) of operations

• Arm Default NaN: disables NaN payload propagation
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Hardware: operations

• IEEE 754 defines a suite of core arithmetic operations
• +, -, *, /, sqrt, fma, conversions, comparisons nearly universal in hardware

• IEEE 754 also has a suite of additional arithmetic operations
• Examples: exp, pow, atan

• Occasionally implemented in hardware (at possibly low precision)

• Non-IEEE 754 functions can sometimes be found in hardware
• Complex multiply, dot product, etc.

• Low precision operations (reciprocal, rsqrt)

• Static rounding mode operations increasingly prevalent
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LLVM Semantics
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The good parts of floating-point semantics

• LLVM’s floating-point types have well-defined formats

• Non-floating-point operations have well-specified behavior
• load, store, phi, etc. do not change the bit pattern of values

• fabs, fneg, fcopysign effectively integer operations on the sign bits

• NaN payload behavior now specified (~weak propagation)

• sNaN not guaranteed to be quieted

• Usually FP values are precisely that guaranteed by IEEE 754
• Optimizations can’t change precision by default

• Excess precision (x87 behavior) not allowed



Intel ConfidentialDepartment or Event Name 11LLVM Dev Meeting 2024 11

LLVM and the FP environment

• LLVM assumes the FP environment is unused
• All control bits are assumed to be default values, UB if not

• Exception sticky bits are unspecified values

• Approximately #pragma STDC FENV_ACCESS OFF rules

• This allows FP operations to be speculated or removed freely

• The strictfp attribute on function overrides this assumption
• ... but what are the semantics of instructions in this?

• Denormal flushing instead uses denormal-fp-math attribute
• … but this isn’t consistently correctly set by frontends

• Can’t describe environment changes mid-function
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Constrained intrinsics

• Design goal is to strongly disable optimizations by default

• Replace FP operations in strictfp functions

• Has hints for expected rounding mode, exception behavior

• Can’t mix constrained intrinsics and regular FP instructions

%val = call half @llvm.experimental.constrained.fadd.f16(
   half %x, half %y,
   metadata !"round.tonearest",
   metadata !"fpexcept.maytrap")
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Constrained intrinsics – failed experiment?

• They’re experimental… has the experiment failed?

• Requires duplication of every intrinsic
• We don’t have duplicates for target-specific intrinsics

• Combinatorial explosion when vector predication intrinsics exist

• Also requires duplication of every pattern that can match

• Inflexible for extending to more FP environment bits

• Tentative consensus that we want to use operand bundles

%val = call half @llvm.log.f16(half %x)
   ["fpe.except"(i32 0), "fpe.round"(i32 1)]
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Math library functions

• Main set of library functions ultimately derived from IEEE 754

• IEEE 754 requires they be correctly rounded; C doesn’t
• In practice, few libraries correctly round

• Most libraries will return different results for same inputs

• In LLVM, can be C name (logf) or LLVM intrinsic (llvm.log.f32)
• Recall that C long double maps to potentially 1 of 4 LLVM types

• Intrinsics defined as equivalent to libm without exceptions/errno
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Math library functions – issues

• We happily constant fold intrinsics, which changes results

• Codegen often lowers intrinsics to libm, which may set errno!

• Patterns only match either the C or the LLVM functions

• When are we allowed to apply mathematical identities?
• Can we say sin(-x) == -sin(x)?

• Can we say sin(0.0) == 0.0?

• Can we say sin(x) / cos(x) == tan(x) under -ffast-math? Which flags?
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Fast-math

• Mostly specified via orthogonal flags on instructions
• Except floating-point conversions

• Also via function attributes (mostly used by codegen)

• Slowly working my way through better semantics of existing flags

• We need more flag bits (reassoc enables too much)

• Existing optimizations don’t follow rules
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LLVM FP Semantics Scorecard

Feature Grade Issues

FP types A

Value semantics A- x87 implementation is buggy; silent on noncanonicals

Denormal flushing B- denormal-fp-math unreliable

FP environment C See slide on constrained intrinsics

Math library C See slide on math library

Fast-math C- Incorrect optimizations, insufficient flags, poorly specified

Low-precision approximations D Not really implemented

Static rounding mode operations F Not implemented
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Backup
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LLVM floating point types

• half, float, double, fp128: IEEE-754 format types

• bfloat: fully describable with IEEE-754 format parameters

• x86_fp80: integer bit is explicit instead of implicit
• But generally required by the other 79 bits to be a particular value!

• Introduces noncanonical value representations

• ppc_fp128: pair of IEEE-754 double values
• Cannot be directly modeled with IEEE-754 semantics
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Noncanonical values

• Noncanonical value is an alternative representation for a value

• x86_fp80, ppc_fp128, IEEE 754 decimal FP types have them

• Denormal flushing ~ denormals are noncanonical zeros

• LLVM’s semantics say nothing about them

• Best behavior probably like sNaN:
don’t guarantee that regular operations canonicalize values

• Leverage llvm.canonicalize for guaranteed canonicalization
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