
When unsafe code is slow
Automatic Differentiation in Rust

Manuel Drehwald (University of Toronto)



Motivation

● How good is idiomatic Rust?
● Is safety a performance “bug”, or a feature?
● Focusing on HPC, Scientific Computing, and ML

2



Unsafe Superpowers

“You can take five actions in unsafe Rust that you can’t in safe Rust”[1]

● Dereference a raw pointer
● Call an unsafe function or method
● Access or modify a mutable static variable
● Implement an unsafe trait
● Access fields of a union

We don’t track (un)safety further

[1] https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#unsafe-superpowers
3



False compliments

● Safety costs are too high
● But you can write it unsafe like C to be fast :)

https://xkcd.com/386/ 4



What is this Automatic Differentiation (AD)?

● Derivatives, but for Code

5



Automatic Differentiation for LLVM

● Performing AD after optimization yields a 4.2× speedup
● Rust IR is too unoptimized for AD

6



Selling it to Rust

● Climate Simulations
● ODE Solvers
● Differentiable Rendering
● Neural Networks
● Mechanical Engineering
● Quantum Computing
● Molecular Forces in Chemistry
● …

https://scientificcomputing.rs/

7

https://scientificcomputing.rs/


The current status

● Supported by a Rust Foundation Fellowship
● Mostly merged!

8



So unsafe code is slow?

● We have 5 Benchmarks
● C++ vs. Rust
● With and without noalias
● Two competing tools for C++ (Tapenade, Adept)

9



How bad can it be?

● All C++/Rust versions on pair without AD
● Disclaimer: Early numbers

10



A closer look at FFT

● Bounds-checking for runtime sizes is hard
● Unsafe brings us ahead
● ~40% perf. improvement

11



A closer look at GMM 

● First 3 spots use noalias Information
● 10x performance penalty for Rust
● 4x performance penalty for C++

Rust
C++

noalias 12



Why noalias?

● (Reverse-Mode) Autodiff doubles the function length

1. “Mirror” the original function
2. Cache variables in the original (forward) pass
3. Reload or Recompute variables in the new (reverse) pass

https://netlib.org/lapack/explore-html/de/d6a/group__blas__top.html

13



Compile Times



Challenges for Automatic Differentiation

● We need Type Info for correct AD
● C++ has TBAA.

15



Compile time fixes for Rust

● MIR = Rust Mid-Level IR

LLVM 
has 
opaque 
ptr

MIR 
adds 
opaque 
types

MIR 
adds 
opaque 
types

Lower 
MIR 
types

16



Compile times for JAX vs Rust

● Normalized time against the smallest Chemistry Model
● JAX Model of degree 8 benchmarks ran Out-Of-Memory (>50k LoC)

Increase in Model ComplexityIncrease in Model Complexity

17



Can C++ do better?

● 5 functions from our Chemistry Model
● 500 lines each
● C++: std::vector
● Rust: std::vec::Vec (vec[] and vec.unchecked_get())

18



Can C++ do better?

● 5 functions
● 500 lines each 50% LLVM post-opt (Vectorizer?)

19

Compile Time C++ Rust Rust unchecked_get()

Release build 131s 87s 29.3s

Debug build > 1hr 8.3s 130s

Baseline (release) 3.3s 6.0s 9.2s



Correctness



Bounds checking for shadow memory?

● We assert that shadow slices are long enough.
● We don’t handle vectors or indirections yet. UB

21



Mutability of shadow memory

● Enzyme can overwrite immutable Rust types. UB

● We don’t find it in structs

● But in Slices

22



Passing in wrong enum Variants?

Enzyme can overwrite wrong Rust types. Sometimes UB

23



Questions?


