When unsafe code is slow
Automatic Differentiation in Rust

Manuel Drehwald (University of Toronto)

Motivation

e How good is idiomatic Rust?
e |s safety a performance “bug”, or a feature?
e Focusing on HPC, Scientific Computing, and ML

Unsafe Superpowers

“You can take five actions in unsafe Rust that you can’t in safe Rust’l']

Dereference a raw pointer

Call an unsafe function or method
Access or modify a mutable static variable
Implement an unsafe trait

Access fields of a union

We don't track (un)safety further

[1] https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#unsafe-superpowers

False compliments

e Safety costs are too high ARE You COMING To BED?

e But you can write it unsafe like C to be fast :)) T CAN'T THIS
1S5 IMPORTANT.
WHAT? !

¥ SOMEONE 1S WRONG

ONTHE INTERNET.
/

WL [ﬁ

P |

https://xkcd.com/386/

What is this Automatic Differentiation (AD)?

e Derivatives, but for Code

100

— f(x)=x"2
— f(x)=2%x

80

60

40 A

20 A

Automatic Differentiation for LLVM

e Performing AD after optimization yields a 4.2x speedup
e Rust IR is too unoptimized for AD

Speedup (Higher is Better)

1.0

I Enzyme
B Ref

I Tapenade
BN Adept

0.8+

Selling it to Rust

Climate Simulations

ODE Solvers

Differentiable Rendering
Neural Networks

Mechanical Engineering
Quantum Computing
Molecular Forces in Chemistry

https://scientificcomputing.rs/

https://scientificcomputing.rs/

The current status

e Supported by a Rust Foundation Fellowship
e Mostly merged!

Steps

Get compiler MCP approved.

o (© Integrate Enzyme into nightly rustc compiler-team#61
Get lang experiment approved.

o We approved this in the lang triage meeting on 2024-05-01.
Land the experimental implementation in nightly.

o Combined change for reference: { ; Autodiff Uj

So unsafe code is slow?

We have 5 Benchmarks

C++ vs. Rust

With and without noalias

Two competing tools for C++ (Tapenade, Adept)

How bad can it be?

e All C++/Rust versions on pair without AD
e Disclaimer: Early numbers

(T

N

20 »

Q

£

-

=11]

10 85

=

D~ g

I~ 00 — AN D B B T =

== NN S o AN =
oo O OOOOO._

BA BRUSS

BERust HBRustraw-p [0C++ BBC++un [0Tapenade NN Adept

10

A closer look at FFT

Bounds-checking for runtime sizes is hard

Unsafe brings us ahead
~40% perf. improvement

fix safe fft performance

¥ rust-bench (#1797

M Zusez4 committed 3 weeks ago

enzyme/benchmarks/ReverseMode/fft/src/lib.rs (0
e_swap_unchecked)]
#![feature(autodiff)] #![fe diff)]

pub mod safe;

enzyme/benchmarks/ReverseMode/fft/src/safe.rs LD

n bitreversal perm<T>(d &mu
vhile i < 2*1len {
if j >1i(

vhile i < 2*len {
if j >i(

data.swap(j-1, i-1);
data.swap(j, i);

} 1 b

let mut m = len; let mut m = len;

< Prev Next

unsafe {data.swap_unchecked(j-1, i-1);}
unsafe {data.swap_unchecked(j, i);}

>

11

A closer look at GMM

e First 3 spots use noalias Information
e 10x performance penalty for Rust
e 4x performance penalty for C++

C++
Rust LA
a3 e
~—H =
N AN D
N N0
& o =i .
=] [= CDI
— I

noalias

12

Why noalias?
e (Reverse-Mode) Autodiff doubles the function length

1. “Mirror” the original function
2. Cache variables in the original (forward) pass
3. Reload or Recompute variables in the new (reverse) pass

subroutine dgemm (transa, transb, m, n, k, alpha, a, Ida, b, Idb, beta, c, Idc)

DGEMM

https://netlib.org/lapack/explore-html/de/d6a/group__blas__top.html

13

Compile Times

Challenges for Automatic Differentiation

e \We need Type Info for correct AD
e C++ has TBAA.

void f(voidx dst, voidx src) { memcpy(dst, src, 8); }

// Assume double inputs // Assume float inputs
Vf(doublex dst, doublex ddst, Vf(floatx dst, float*x ddst,
double*x src, doublex dsrc) { float* src, floatx dsrc) {
// Forward pass // Forward pass
memcpy (dst, src, 8); memcpy (dst, src, 8);
// Reverse pass // Reverse pass
dsrc[0] += ddst[0]; dsrc[0] += ddst[0];
ddst[0] = 0; ddst[0] = 0;
dsrc[1] += ddst[1];
ddst[1] = 0;
} }

Figure 2. Top: Call to memcpy for an unknown 8-byte object. Left: Gradient for a
memcpy of 8 bytes of double data. Right: Gradient for a memcpy of 8 bytes of float data.

Compile time fixes for Rust

MIR = Rust Mid-Level IR

LLVM
has

opaque
ptr

MIR
adds
opaque
types

MIR
adds
opaque
types

16

Compile times for JAX vs Rust

e Normalized time against the smallest Chemistry Model
e JAX Model of degree 8 benchmarks ran Out-Of-Memory (>50k LoC)

1044 a)

5508
5458

jitting time

compile time
=)

=

o
3
L

100 4

[

(=]
=}
L

Increase in Model Complexity Increase in Model Complexity

Can C++ do better?

void f 1(std

vec|[
vec|
vec|[
vec[
vec|[
vec[
vec]|
vec[

]
]
]
]
]
]
]
]

::vector<float>& vec) {

vec|
vec|[
vec|
vec|
vec|
vec|
vec|
vec|

] + vec]|
] - vec|
] * vec]
] * vec]
] - vec]
] + vec]
] * vec]
] + vec]|

]
]

]
]

- vec|
- vec|

- vec|
- vec|[

] + vec]|

] * wvecf2j;

] * vec]

]

- vec|

5 functions from our Chemistry Model
500 lines each

C++: std::vector
Rust: std::vec::Vec (vec[] and vec.unchecked get())

1;

: &mut
= vec]|

|

| | |) | Y | B | B |

[

[
[
vec [
rec [
[
[

32]

i Gl
] + vec
] - vec

]

] - vec
] -

]

18

Can C++ do better?

e 5 functions

e 500 lines each

950% LLVM post-opt (Vectorizer?)

/>

Compile Time C++ Rust ‘\/ Rust unchecked_get()
Release build 131s 87s u 29.3s

Debug build > 1hr 8.3s 130s

Baseline (release) 3.3s 6.0s 9.2s

19

Correctness

Bounds checking for shadow memory?

e \WVe assert that shadow slices are long enough.
e \We don't handle vectors or indirections yet. UB

main() {

let x = vec!| 2 12

let mut too short = vec!|[
df (&, &mut too short);

21

Mutability of shadow memory

e Enzyme can overwrite immutable Rust types. UB

struct evil {

e We don't find it in structs value: 732,

const data: &'static 32,

: reading from a “Duplicated’ const ref is unsafe
-=> src/main.rs:6:1

: . |
e Butin Slices 6 | fn f(x: &[&f32], out: &mut f32) {

22

Passing in wrong enum Variants?

Enzyme can overwrite wrong Rust types. Sometimes UB

enum Evil {
(132),
(132),

(*mut f32),
(Option<&f32>),

23

Questions?

