Google

Modern Embedded
Development with LLVM

Last year we presented early results...

2023 LLVM

eeeeeeee © MeEeTING

o Bluetooth & Sensors
Arm Cortex M4/MO+

Charging Case o
Arm Cortex M4

LLVM Toolchain for Embedded Systems Prabhu Karthikeyan Rajasekaran

https://www.youtube.com/watch?v=0HvgvBUPTyw

Made
b

..and we made a lot of progress since then \
Google

What has been our experience?

Most baremetal projects use toolchains provided by their silicon vendors which are
frequently outdated and seldomly updated.

Silicon vendors use their toolchains for their platform libraries and can (inadvertently)
force their toolchains onto their customers through APl and ABI design.

Every toolchain comes with its own C and C++ library and aligning APl and ABI
between different C and C++ libraries can be challenging, and in some cases
impossible when custom proprietary extensions are involved.

Arm, RISC-V, etc.

toolchain|per target x toolchain per host

Linux, macOS, Windows, etc.

Update toolchain every - years

V5

Live at HEAD

We “live at HEAD”

We aim to provide an open-source cross-compiling Clang/LLVM toolchain for
baremetal without any legacy components and roll it on a continuous basis.

e Clang, LLD and LLVM tools as an alternative to GCC and GNU binutils.
e LLVM libc, libc++ and compiler-rt instead of newlib/picolibc, libstdc++ and libgcc.

We aim to provide the same experience on every supported target and host platform.

“Live at HEAD”
relies on automation & testing

We need a reference platform to run tests on

RP204O \ Raspberry P.i:iiico @32020:; ‘:__”:” \
Arm Cortex-MO+ O
264kB SRAM, 2MB flash

RP2350

O Arm Cortex-M33 & RISC-V RV32
520kB SRAM, 4MB flash

Google

We worked closely with the Raspberry Pi
Foundation and the Pigweed team, making Pico
SDK the first baremetal project that can be built
using the open-source Clang/LLVM toolchain with
compiler-rt, LLVM libc and libc++.

@ Raspberry Pi

Forhome Forindustry Hardware Software

Google Pigweed comes to our new RP2350

‘ 8th Aug 2024 Chris Boross

We love Google Pigweed! Pigweed is an open source project launched by Google in
2020. We love it because it helps programmers and teams of developers build great
software for embedded devices that use microcontrollers like our new RP2350 and its
predecessor, RP2040. We are also partial to funny product names around here; we are
thrilled that our Pico W has gone down in the community's vernacular as “pie cow”

Google's demo built on the new Pigweed SDK uses Pimoroni's Enviro+ Pack add-on to help
showcase all the neat stuff Pigweed does for developers

We've been working with the Pigweed team for almost a year now. Last month they
upstreamed Bazel support into our Pico SDK, and will continue to maintain it going
forward.

Bazel is an important part of the Pigweed project, and the team believes it's going to be
the future of embedded software development, making it easier for large, professional
embedded development teams to build prototypes and products on top of RP2350.
Head over to Bazel's launch blog post to learn more about the benefits of Bazel for
embedded.

The Pigweed team has built a great demo for you to try on your Raspberry Pi Pico 1 or
Pico 2. This demo shows off lots of complex stuff handled and enabled by Pigweed,
including:

g frastimg-am-testmg-trowg
Fully open-source Clang/LLVM toolchain for embedded that includes a compiler,
linker, and C/C++ libraries with modern performance, features, and standards
compliance

tructuring your codebase around sensible, hardware-agnostic C++ through

Pigweed’s extensive COTECTIOM BT TaTe:
Communicating with your Pico over RPC
Viewing Pico logs and sending commands to the Pico over an interactive and
customizable REPL

Authoring in Visual Studio Code with C++, Starlark code intelligence, and Bazel
command integration

Cross-platform builds and toolchains, development on macOS or Linux (Windows
support is on its way)

Device simulation on your host computer

« Continuous building and testing with GitHub Actions

Documentation ~ News ~ Forums Foundation

RELATED POSTS

Raspberry Pi Pico 2, our
new $5 microcontroller
board, on sale now

E Real-time ML audio noise

suppression on Raspberry

PiPico2
NEXT POST
Raspberry Pi Pico 2, our
new $5 microcontroller
board, on sale now
PREVIOUS POST

Real-time ML audio noise
suppression on Raspberry
Pi Pico 2

Sharethispost ¥ f in P

Contact

git clone https://github.com/raspberrypi/pico-sdk
cmaoke -S pico-sdk -B build -G Ninja \

-D PICO_COMPILER=pico_arm_cortex_m33_clang \

-D PICO_PLATFORM=rp2350-arm-s \

-D PICO_TOOLCHAIN_PATH=?

ninja -C build

Pico.cmake
set (CMAKE_BUILD TYPE Release CACHE STRING "")

set(LLVM_TARGETS_TO_BUILD ARM;RISCV CACHE STRING "")
set(LLVM_ENABLE_PROJECTS clang;11d;11lvm CACHE STRING "")
set(LLVM_ENABLE_RUNTIMES compiler-rt;libcxx;libc CACHE STRING "")

set (CLANG_DEFAULT_CXX_STDLIB libc++ CACHE STRING "")
set (CLANG_DEFAULT_LINKER 11d CACHE STRING "")
set (CLANG_DEFAULT_RTLIB compiler-rt CACHE STRING "")

set(LLVM_INSTALL_TOOLCHAIN_ONLY ON CACHE BOOL "")

set(LLVM_TOOLCHAIN_TOOLS
1lvm-ar;1llvm-cov;1llvm-objcopy;llvm-objdump;llvm-profdata;1llvm-ranlib;1llvm-readelf;1llvm-readob
ji1llvm-size;1llvm-strings;llvm-strip;llvm-symbolizer CACHE STRING "")
set(LLVM_DISTRIBUTION_COMPONENTS

builtins;clang;clang-resource-headers;11d; runtimes;${LLVM_TOOLCHAIN TOOLS} CACHE STRING "")

Pico.cmake
set(LLVM_BUILTIN_TARGETS armv8m.main-none-eabi;riscv32-unknown-elf CACHE STRING "")
foreach(target ${LLVM BUILTIN TARGETS})
set (BUILTINS ${target} CMAKE_SYSTEM_NAME Generic CACHE STRING "")
set(BUILTINS_${target} CMAKE_BUILD_TYPE MinSizeRel CACHE STRING "")
set (BUILTINS ${target} COMPILER_RT_BAREMETAL_ BUILD ON CACHE BOOL "")
endforeach()
set (BUILTINS armv8m.main-none-eabi CMAKE_SYSTEM_PROCESSOR arm CACHE STRING "")
set (BUILTINS riscv32-unknown-elf CMAKE_SYSTEM_PROCESSOR RISCV CACHE STRING "")
foreach(lang C;CXX;ASM)
set(BUILTINS armv8m.main-none-eabi CMAKE_${lang} FLAGS "-march=armv8m.main+fp+dsp
-mcpu=cortex-m33 -mfloat-abi=softfp" CACHE STRING "")
set(BUILTINS riscv32-unknown-elf CMAKE ${lang} FLAGS
"-march=rv32imac_zicsr_zifencei_zba_zbb_ zbs zbkb -mabi=ilp32" CACHE STRING "")

endforeach()

Pico.cmake
set(LLVM_RUNTIME_TARGETS armv8m.main-none-eabi;riscv32-unknown-elf CACHE STRING "")
foreach(target ${LLVM_RUNTIME TARGETS})
set (RUNTIMES_${target} CMAKE_SYSTEM_NAME Generic CACHE STRING "")
set (RUNTIMES ${target} CMAKE BUILD TYPE MinSizeRel CACHE STRING "")
set (RUNTIMES_${target} CMAKE_TRY_COMPILE_TARGET_TYPE STATIC_LIBRARY CACHE STRING "")
set (RUNTIMES ${target} LLVM_ENABLE_RUNTIMES libc;libcxx CACHE STRING "")
set(RUNTIMES _${target} LLVM_ENABLE_ASSERTIONS OFF CACHE BOOL "")
endforeach()
set (RUNTIMES _armv8m.main-none-eabi_ CMAKE_SYSTEM_PROCESSOR arm CACHE STRING "")
set (RUNTIMES riscv32-unknown-elf CMAKE_SYSTEM_PROCESSOR RISCV CACHE STRING "")
foreach(lang C;CXX;ASM)
set (RUNTIMES armv8m.main-none-eabi CMAKE_${lang} FLAGS "-march=armv8m.main+fp+dsp
-mcpu=cortex-m33 -mfloat-abi=softfp" CACHE STRING "")
set (RUNTIMES riscv32-unknown-elf CMAKE ${lang} FLAGS

"-march=rv32imac_zicsr_zifencei_zba_zbb_zbs_zbkb -mabi=ilp32" CACHE STRING "")
endforeach()

git clone https://github.com/1lvm/1llvm-project
cmaoke -S llvm-project/llvm -B build -G Ninja -C Pico.cmake

ninja -C build distribution

©“H H BH &H

ninja -C build install-distribution-stripped

CMake cache file for building Pico SDK toolchain #113267

https://github.com/llvm/llvm-project/pull/113267

compiler-rt

compiler-rt builtins is mostly a replacement for libgcc, and we haven't encountered
any issues.

LLVM isn't aware of the compiler runtime is being used and cannot take advantage of
routines that are compiler-rt specific.

LLVM libc

libc is becoming ready for broader adoption, and offers permissively licensed C library
implementation that can be scaled down to baremetal projects.

We had to implement a number of missing functionality including:
e high order math functions;
e malloc implementation suitable for embedded;

e basic I/0 support.

Some parts, most notably startup, semihosting I/0 and threading, are still missing.

struct

extern

extern

extern

extern

extern

extern

extern

__1lvm_libc_stdio_cookie;

llcll

llcll

llcll

llcll

llcll

llcll

llcll

struct __1lvm_libc_stdio_cookie __1lvm_libc_stdin_cookie;
struct _ 1lvm_libc_stdio_cookie __ 1lvm_libc_stdout_cookie;

struct _ 1lvm_libc_stdio_cookie __1lvm_libc_stderr_cookie;
ssize t _ 1lvm_libc_stdio_read(void *cookie, char *buf, size t size);
ssize_t _ 11vm_libc_stdio_write(void *cookie, const char *buf,

size t size);

[[noreturn]] void _ 1lvm_libc_exit(int status);

int *__1lvm_libc_errno();

LLVM libc++

libc++ has a number of options to disable unnecessary functionality, but we need
more configuration points to better support embedded environment.

There are still places where libc++ relies on functionality that is undesirable in
baremetal projects: dynamic memory allocation, TLS or float support.

We had to introduce support for building libc++ against libc.

Support use of libc++ with LLVM libc in embedded development #84879

et

https://github.com/llvm/llvm-project/issues/84879

Pico.cmake

foreach(target ${LLVM_RUNTIME_TARGETS})

set(RUNTIMES_${target} LLVM LIBC_FULL_BUILD ON CACHE BOOL "")
set(RUNTIMES_${target} LIBC_ENABLE_USE_BY CLANG ON CACHE BOOL "")
set(RUNTIMES_${target} LIBCXX_CXX_ABI none CACHE STRING "")
set(RUNTIMES_${target} LIBCXX_LIBC llvm-libc CACHE STRING "")
set(RUNTIMES_${target} LIBCXX_ENABLE_SHARED OFF CACHE BOOL "")
set(RUNTIMES_${target} LIBCXX_ENABLE_FILESYSTEM OFF CACHE BOOL "")

set (RUNTIMES_${target} LIBCXX_ENABLE_RANDOM_DEVICE OFF CACHE BOOL "")
set(RUNTIMES_${target} LIBCXX_ENABLE_LOCALIZATION OFF CACHE BOOL "")
set(RUNTIMES_${target} LIBCXX_ ENABLE_UNICODE OFF CACHE BOOL "")
set(RUNTIMES_${target} LIBCXX_ENABLE_WIDE_CHARACTERS OFF CACHE BOOL "")
set(RUNTIMES_${target} LIBCXX_ENABLE_EXCEPTIONS OFF CACHE BOOL "")
set(RUNTIMES_${target} LIBCXX_ENABLE_RTTI OFF CACHE BOOL "")
set(RUNTIMES_${target} LIBCXX_ ENABLE_THREADS OFF CACHE BOOL "")
set(RUNTIMES_${target} LIBCXX_ENABLE_MONOTONIC CLOCK OFF CACHE BOOL "")
set(RUNTIMES_${target} LIBCXX_ USE_COMPILER RT ON CACHE BOOL "")

endforeach()

Building a toolchain is becoming easier

It used to be harder to build a toolchain (and impossible from within llvm-project.qit),
but there is still a lot of room for improvement.

The runtimes build has a basic multilib support, but every variant requires a separate
CMake subbuild and there's no support for the newmultilib.yaml configuration.

Ideally we wouldn't be distributing binary libraries and build runtimes from source
on demand. We have a minimal prototype in , but it's build system specific.

https://github.com/llvm/llvm-project
https://clang.llvm.org/docs/Multilib.html

Performance still has gaps

Most baremetal projects are sensitive to binary size and memory usage, making
everything fit can require a lot of cargo culting.

GCC -0s better balances size and performance, Clang -0z produces smaller binaries
but disables useful optimizations which can pessimize performance.

Stack allocation in LLVM has a number of issues which can lead to inefficient stack
usage that is frequently causing issues on baremetal.

Trivial memset optimization not applied to loops under -Oz #50308
Improve stack slot reuse #109204

https://github.com/llvm/llvm-project/issues/50308
https://github.com/llvm/llvm-project/issues/109204

CFLAGS = -0z -finline-max-stacksize=256 -fomit-frame-pointer -fshort-enums
-ffunction-sections -fdata-sections -fseparate-named-sections -ffixed-point
Enable ML inliner

CFLAGS += -mllvm -enable-ml-inliner=release

Enable GV sink/hoist

CFLAGS += -mllvm -enable-gvn-sink=1 -mllvm -enable-gvn-hoist=1

CXXFLAGS = -fno-c++-static-destructors -fno-exceptions -fno-rtti
Remove the unused RTTI component from vtables

CXXFLAGS += -Xclang -fexperimental-omit-vtaoble-rtti

LDFLAGS = -W1,--gc-sections -Wl,--icf=all -W1,-02

Debugging can be challenging

LLVM and LLDB don't support all DWARF CFI constructs which are often needed to
support unwinding through hand-written Assembly such as interrupt handlers.

LLDB support for baremetal has many gaps, for example the 32-bit RISC-V support is
largely missing.

There's a lot of value in LLVM

embedded developers could

benefit from, but embedded
systems have constraints

Support for heterogeneous memory

Embedded systems use attributes and linker scripts to place symbols in specific
memory regions, we need to figure out how to make these compatible with LTO/PGO.

e LTO can reduce binary size by >20%, but doesn't support linker scripts.
e PGO can improve performance by >20%, but doesn't support memory placement.

We would also like to explore post-link optimization for baremetal.

Bringing link-time optimization to the embedded world: (Thin)LTO with Linker Scripts Tobias Edler von Koch
Link-Time Attributes for LTO: Incorporating Linker Knowledge Into the LTO Recompile Todd Snider
Higher-Level Linker Scripts for Embedded Systems Daniel Thornburgh

https://www.youtube.com/watch?v=hhaPAKUt35E
https://www.youtube.com/watch?v=OkGsMrVd2y8

Sanitizers on memory constrained devices

Sanitizers are great tools for finding runtime bugs, but using them in embedded
systems is challenging.

e UBSan has several runtime implementations, none of them is a great fit.
e ASan instrumentation overhead is too high, we need ways to reduce it.

e Other sanitizers may be infeasible due to high overhead.

Sanitizer runtimes were developed for POSIX (and later Windows), making them
difficult to (re)use for baremetal platforms.

Address Sanitizer on Baremetal Targets Oliver Stannard

https://discourse.llvm.org/t/llvm-embedded-toolchains-working-group-sync-up/63270/41?u=petrhosek

Source-based code coverage for baremetal

Code coverage is an important testing metric and LLVM has great tooling for
coverage, but the profile runtime has structural issues that complicate porting.

There are opportunities for reducing the instrumentation overhead:
e Single-byte counters

e Conditional counter updates
e Saturating 32-bit counters

LLVM is a great fit for embedded

Cross e LLVMis a cross-compiler so a single toolchain can support a variety of targets

compilation We are making it easier to build a complete toolchain in LLVM build

LLVM offers modular permissively licensed C and C++ standard library

C/C++ library

e We are making LLVM libc and libc++ usable on baremetal

Continuous e There are baremetal projects using Clang/LLVM toolchain that “Live at HEAD”
testing e Pico SDK now supports open-source Clang/LLVM toolchain
Tools & e We are trying to enable the use of profiling and LTO on baremetal

features e Thereis a lot of interest in sanitizers and coverage for embedded

How to get involved?

There's an active and growing embedded community within LLVM.

e LLVM Embedded Toolchains Working Group Thursday 9am PST every 4 weeks
e LLVM Embedded Toolchains Workshop as part of LLVM Developers' Meeting

embedded label in GitHub as a way to find issues related to baremetal uses.

https://discourse.llvm.org/t/llvm-embedded-toolchains-working-group-sync-up/63270
https://llvm.swoogo.com/2024devmtg/agenda_
https://github.com/llvm/llvm-project/labels/embedded

