
Petr Hosek (phosek@google.com) October 2024LLVM Dev Mtg '24

Modern Embedded
Development with LLVM

2

LLVM Toolchain for Embedded Systems Prabhu Karthikeyan Rajasekaran

Charging Case
Arm Cortex M4

Bluetooth & Sensors
Arm Cortex M4/M0+

Last year we presented early results…

https://www.youtube.com/watch?v=0HvgvBUPTyw

3

…and we made a lot of progress since then

4

Most baremetal projects use toolchains provided by their silicon vendors which are
frequently outdated and seldomly updated.

Silicon vendors use their toolchains for their platform libraries and can (inadvertently)
force their toolchains onto their customers through API and ABI design.

Every toolchain comes with its own C and C++ library and aligning API and ABI
between different C and C++ libraries can be challenging, and in some cases
impossible when custom proprietary extensions are involved.

What has been our experience?

5

toolchain per target × toolchain per host

Arm, RISC-V, etc.

Linux, macOS, Windows, etc.

6

Update toolchain every ? years
vs

Live at HEAD

7

We aim to provide an open-source cross-compiling Clang/LLVM toolchain for
baremetal without any legacy components and roll it on a continuous basis.

● Clang, LLD and LLVM tools as an alternative to GCC and GNU binutils.
● LLVM libc, libc++ and compiler-rt instead of newlib/picolibc, libstdc++ and libgcc.

We aim to provide the same experience on every supported target and host platform.

We “live at HEAD”

8

“Live at HEAD”
relies on automation & testing

9

RP2040
Arm Cortex-M0+
264kB SRAM, 2MB flash

RP2350
Arm Cortex-M33 & RISC-V RV32
520kB SRAM, 4MB flash

We need a reference platform to run tests on

10

We worked closely with the Raspberry Pi
Foundation and the Pigweed team, making Pico
SDK the first baremetal project that can be built
using the open-source Clang/LLVM toolchain with
compiler-rt, LLVM libc and libc++.

11

$ git clone https://github.com/raspberrypi/pico-sdk

$ cmake -S pico-sdk -B build -G Ninja \

 -D PICO_COMPILER=pico_arm_cortex_m33_clang \

 -D PICO_PLATFORM=rp2350-arm-s \

 -D PICO_TOOLCHAIN_PATH=?

$ ninja -C build

12

Pico.cmake

set(CMAKE_BUILD_TYPE Release CACHE STRING "")

set(LLVM_TARGETS_TO_BUILD ARM;RISCV CACHE STRING "")

set(LLVM_ENABLE_PROJECTS clang;lld;llvm CACHE STRING "")

set(LLVM_ENABLE_RUNTIMES compiler-rt;libcxx;libc CACHE STRING "")

set(CLANG_DEFAULT_CXX_STDLIB libc++ CACHE STRING "")

set(CLANG_DEFAULT_LINKER lld CACHE STRING "")

set(CLANG_DEFAULT_RTLIB compiler-rt CACHE STRING "")

set(LLVM_INSTALL_TOOLCHAIN_ONLY ON CACHE BOOL "")

set(LLVM_TOOLCHAIN_TOOLS

llvm-ar;llvm-cov;llvm-objcopy;llvm-objdump;llvm-profdata;llvm-ranlib;llvm-readelf;llvm-readob

j;llvm-size;llvm-strings;llvm-strip;llvm-symbolizer CACHE STRING "")

set(LLVM_DISTRIBUTION_COMPONENTS

builtins;clang;clang-resource-headers;lld;runtimes;${LLVM_TOOLCHAIN_TOOLS} CACHE STRING "")

13

Pico.cmake

set(LLVM_BUILTIN_TARGETS armv8m.main-none-eabi;riscv32-unknown-elf CACHE STRING "")

foreach(target ${LLVM_BUILTIN_TARGETS})

 set(BUILTINS_${target}_CMAKE_SYSTEM_NAME Generic CACHE STRING "")

 set(BUILTINS_${target}_CMAKE_BUILD_TYPE MinSizeRel CACHE STRING "")

 set(BUILTINS_${target}_COMPILER_RT_BAREMETAL_BUILD ON CACHE BOOL "")

endforeach()

set(BUILTINS_armv8m.main-none-eabi_CMAKE_SYSTEM_PROCESSOR arm CACHE STRING "")

set(BUILTINS_riscv32-unknown-elf_CMAKE_SYSTEM_PROCESSOR RISCV CACHE STRING "")

foreach(lang C;CXX;ASM)

 set(BUILTINS_armv8m.main-none-eabi_CMAKE_${lang}_FLAGS "-march=armv8m.main+fp+dsp

-mcpu=cortex-m33 -mfloat-abi=softfp" CACHE STRING "")

 set(BUILTINS_riscv32-unknown-elf_CMAKE_${lang}_FLAGS

"-march=rv32imac_zicsr_zifencei_zba_zbb_zbs_zbkb -mabi=ilp32" CACHE STRING "")

endforeach()

14

Pico.cmake

set(LLVM_RUNTIME_TARGETS armv8m.main-none-eabi;riscv32-unknown-elf CACHE STRING "")

foreach(target ${LLVM_RUNTIME_TARGETS})

 set(RUNTIMES_${target}_CMAKE_SYSTEM_NAME Generic CACHE STRING "")

 set(RUNTIMES_${target}_CMAKE_BUILD_TYPE MinSizeRel CACHE STRING "")

 set(RUNTIMES_${target}_CMAKE_TRY_COMPILE_TARGET_TYPE STATIC_LIBRARY CACHE STRING "")

 set(RUNTIMES_${target}_LLVM_ENABLE_RUNTIMES libc;libcxx CACHE STRING "")

 set(RUNTIMES_${target}_LLVM_ENABLE_ASSERTIONS OFF CACHE BOOL "")

endforeach()

set(RUNTIMES_armv8m.main-none-eabi_CMAKE_SYSTEM_PROCESSOR arm CACHE STRING "")

set(RUNTIMES_riscv32-unknown-elf_CMAKE_SYSTEM_PROCESSOR RISCV CACHE STRING "")

foreach(lang C;CXX;ASM)

 set(RUNTIMES_armv8m.main-none-eabi_CMAKE_${lang}_FLAGS "-march=armv8m.main+fp+dsp

-mcpu=cortex-m33 -mfloat-abi=softfp" CACHE STRING "")

 set(RUNTIMES_riscv32-unknown-elf_CMAKE_${lang}_FLAGS

"-march=rv32imac_zicsr_zifencei_zba_zbb_zbs_zbkb -mabi=ilp32" CACHE STRING "")

endforeach()

15

$ git clone https://github.com/llvm/llvm-project

$ cmake -S llvm-project/llvm -B build -G Ninja -C Pico.cmake

$ ninja -C build distribution

$ ninja -C build install-distribution-stripped

CMake cache file for building Pico SDK toolchain #113267

https://github.com/llvm/llvm-project/pull/113267

16

compiler-rt builtins is mostly a replacement for libgcc, and we haven't encountered
any issues.

LLVM isn't aware of the compiler runtime is being used and cannot take advantage of
routines that are compiler-rt specific.

compiler-rt

17

libc is becoming ready for broader adoption, and offers permissively licensed C library
implementation that can be scaled down to baremetal projects.

We had to implement a number of missing functionality including:

● high order math functions;
● malloc implementation suitable for embedded;
● basic I/O support.

Some parts, most notably startup, semihosting I/O and threading, are still missing.

LLVM libc

18

struct __llvm_libc_stdio_cookie;

extern "C" struct __llvm_libc_stdio_cookie __llvm_libc_stdin_cookie;

extern "C" struct __llvm_libc_stdio_cookie __llvm_libc_stdout_cookie;

extern "C" struct __llvm_libc_stdio_cookie __llvm_libc_stderr_cookie;

extern "C" ssize_t __llvm_libc_stdio_read(void *cookie, char *buf, size_t size);

extern "C" ssize_t __llvm_libc_stdio_write(void *cookie, const char *buf,

 size_t size);

extern "C" [[noreturn]] void __llvm_libc_exit(int status);

extern "C" int *__llvm_libc_errno();

19

libc++ has a number of options to disable unnecessary functionality, but we need
more configuration points to better support embedded environment.

There are still places where libc++ relies on functionality that is undesirable in
baremetal projects: dynamic memory allocation, TLS or float support.

We had to introduce support for building libc++ against libc.

LLVM libc++

Support use of libc++ with LLVM libc in embedded development #84879

https://github.com/llvm/llvm-project/issues/84879

20

Pico.cmake

foreach(target ${LLVM_RUNTIME_TARGETS})

 …

 set(RUNTIMES_${target}_LLVM_LIBC_FULL_BUILD ON CACHE BOOL "")

 set(RUNTIMES_${target}_LIBC_ENABLE_USE_BY_CLANG ON CACHE BOOL "")

 set(RUNTIMES_${target}_LIBCXX_CXX_ABI none CACHE STRING "")

 set(RUNTIMES_${target}_LIBCXX_LIBC llvm-libc CACHE STRING "")

 set(RUNTIMES_${target}_LIBCXX_ENABLE_SHARED OFF CACHE BOOL "")

 set(RUNTIMES_${target}_LIBCXX_ENABLE_FILESYSTEM OFF CACHE BOOL "")

 set(RUNTIMES_${target}_LIBCXX_ENABLE_RANDOM_DEVICE OFF CACHE BOOL "")

 set(RUNTIMES_${target}_LIBCXX_ENABLE_LOCALIZATION OFF CACHE BOOL "")

 set(RUNTIMES_${target}_LIBCXX_ENABLE_UNICODE OFF CACHE BOOL "")

 set(RUNTIMES_${target}_LIBCXX_ENABLE_WIDE_CHARACTERS OFF CACHE BOOL "")

 set(RUNTIMES_${target}_LIBCXX_ENABLE_EXCEPTIONS OFF CACHE BOOL "")

 set(RUNTIMES_${target}_LIBCXX_ENABLE_RTTI OFF CACHE BOOL "")

 set(RUNTIMES_${target}_LIBCXX_ENABLE_THREADS OFF CACHE BOOL "")

 set(RUNTIMES_${target}_LIBCXX_ENABLE_MONOTONIC_CLOCK OFF CACHE BOOL "")

 set(RUNTIMES_${target}_LIBCXX_USE_COMPILER_RT ON CACHE BOOL "")

endforeach()

21

It used to be harder to build a toolchain (and impossible from within llvm-project.git),
but there is still a lot of room for improvement.

The runtimes build has a basic multilib support, but every variant requires a separate
CMake subbuild and there's no support for the new multilib.yaml configuration.

Ideally we wouldn't be distributing binary libraries and build runtimes from source
on demand. We have a minimal prototype in Pigweed, but it's build system specific.

Building a toolchain is becoming easier

https://github.com/llvm/llvm-project
https://clang.llvm.org/docs/Multilib.html

22

Most baremetal projects are sensitive to binary size and memory usage, making
everything fit can require a lot of cargo culting.

GCC -Os better balances size and performance, Clang -Oz produces smaller binaries
but disables useful optimizations which can pessimize performance.

Stack allocation in LLVM has a number of issues which can lead to inefficient stack
usage that is frequently causing issues on baremetal.

Performance still has gaps

Trivial memset optimization not applied to loops under -Oz #50308
Improve stack slot reuse #109204

https://github.com/llvm/llvm-project/issues/50308
https://github.com/llvm/llvm-project/issues/109204

23

CFLAGS = -Oz -finline-max-stacksize=256 -fomit-frame-pointer -fshort-enums

-ffunction-sections -fdata-sections -fseparate-named-sections -ffixed-point

Enable ML inliner

CFLAGS += -mllvm -enable-ml-inliner=release

Enable GV sink/hoist

CFLAGS += -mllvm -enable-gvn-sink=1 -mllvm -enable-gvn-hoist=1

CXXFLAGS = -fno-c++-static-destructors -fno-exceptions -fno-rtti

Remove the unused RTTI component from vtables

CXXFLAGS += -Xclang -fexperimental-omit-vtable-rtti

LDFLAGS = -Wl,--gc-sections -Wl,--icf=all -Wl,-O2

24

LLVM and LLDB don't support all DWARF CFI constructs which are often needed to
support unwinding through hand-written Assembly such as interrupt handlers.

LLDB support for baremetal has many gaps, for example the 32-bit RISC-V support is
largely missing.

Debugging can be challenging

25

There's a lot of value in LLVM
embedded developers could
benefit from, but embedded

systems have constraints

26

Embedded systems use attributes and linker scripts to place symbols in specific
memory regions, we need to figure out how to make these compatible with LTO/PGO.

● LTO can reduce binary size by >20%, but doesn't support linker scripts.
● PGO can improve performance by >20%, but doesn't support memory placement.

We would also like to explore post-link optimization for baremetal.

Support for heterogeneous memory

Bringing link-time optimization to the embedded world: (Thin)LTO with Linker Scripts Tobias Edler von Koch
Link-Time Attributes for LTO: Incorporating Linker Knowledge Into the LTO Recompile Todd Snider
Higher-Level Linker Scripts for Embedded Systems Daniel Thornburgh

https://www.youtube.com/watch?v=hhaPAKUt35E
https://www.youtube.com/watch?v=OkGsMrVd2y8

27

Sanitizers are great tools for finding runtime bugs, but using them in embedded
systems is challenging.

● UBSan has several runtime implementations, none of them is a great fit.
● ASan instrumentation overhead is too high, we need ways to reduce it.
● Other sanitizers may be infeasible due to high overhead.

Sanitizer runtimes were developed for POSIX (and later Windows), making them
difficult to (re)use for baremetal platforms.

Sanitizers on memory constrained devices

Address Sanitizer on Baremetal Targets Oliver Stannard

https://discourse.llvm.org/t/llvm-embedded-toolchains-working-group-sync-up/63270/41?u=petrhosek

28

Code coverage is an important testing metric and LLVM has great tooling for
coverage, but the profile runtime has structural issues that complicate porting.

There are opportunities for reducing the instrumentation overhead:

● Single-byte counters
● Conditional counter updates
● Saturating 32-bit counters

Source-based code coverage for baremetal

29

LLVM is a great fit for embedded

Cross
compilation

● LLVM is a cross-compiler so a single toolchain can support a variety of targets

● We are making it easier to build a complete toolchain in LLVM build

C/C++ library ● LLVM offers modular permissively licensed C and C++ standard library

● We are making LLVM libc and libc++ usable on baremetal

Continuous
testing

● There are baremetal projects using Clang/LLVM toolchain that “Live at HEAD”

● Pico SDK now supports open-source Clang/LLVM toolchain

Tools &
features

● We are trying to enable the use of profiling and LTO on baremetal

● There is a lot of interest in sanitizers and coverage for embedded

30

There's an active and growing embedded community within LLVM.

● LLVM Embedded Toolchains Working Group Thursday 9am PST every 4 weeks
● LLVM Embedded Toolchains Workshop as part of LLVM Developers' Meeting

 label in GitHub as a way to find issues related to baremetal uses.

How to get involved?

embedded

https://discourse.llvm.org/t/llvm-embedded-toolchains-working-group-sync-up/63270
https://llvm.swoogo.com/2024devmtg/agenda_
https://github.com/llvm/llvm-project/labels/embedded

