
New llvm-exegesis Support for
RISC-V Vector Extension

LLVM Dev Meeting ● October 2024 ● Santa Clara

By Min Hsu

Highlights

2

◆ The importance of llvm-exegesis in performance modeling for RISC-V

◆ The challenges of adding RISC-V Vector (RVV) support into llvm-exegesis

and our solutions to them

◆ Scaling up llvm-exegesis’s overall efficiencies, especially in pre-silicon

RISC-V developments

llvm-exegesis and Scheduling Model

3

Scheduling
Modelllvm-exegesis

Calibrate

Instruction
Schedulers MachineCombiner

MachinePipeliner MCA

● Latency
● Occupancy (inverse throughput)
● HW resources

Before: Calibrate Scheduling Models Manually

4

Human
(this is me btw)

Read through the entire
scheduling model

Compare with
“ground truth”

● Publicly available documents (e.g. AMD SOG)
● Hand-written microbenchmarks (e.g. Agner)
● Consult HW folks (if possible)

Scheduling
Model

Slow

Slow

New: Calibrate Scheduling Models Automatically

5

Generate
Code

Snippets

ComparisonScheduling
Model

Hardware
ExecutionGenerate a snippet for

each instruction opcode
Human

(this is me btw)

llvm-exegesis

Benchmarking with llvm-exegesis: an example
Generated snippet: latency

6

mode: latency
key:
 instructions:
 - 'ADD X21 X10 X21'
 config: ''
 register_initial_values:
 - 'X10=0x0'
 - 'X21=0x0'
cpu_name: sifive-p670
llvm_triple: riscv64
min_instructions: 10000
measurements: []
error: actual measurements skipped.
...

li a0,0
li s5,0
add s5,s5,a0
add s5,s5,a0
add s5,s5,a0
add s5,s5,a0
add s5,s5,a0
add s5,s5,a0
...(repeat 10000 times)

Snippet for measurement

mode: inverse_throughput
key:
 instructions:
 - 'ADD X8 X19 X23'
 config: ''
 register_initial_values:
 - 'X19=0x0'
 - 'X23=0x0'
cpu_name: sifive-p670
llvm_triple: riscv64
min_instructions: 10000
measurements: []
error: actual measurements skipped.
...

Benchmarking with llvm-exegesis: an example
Generated snippet: inverse throughput

7

li s3,0
li s7,0
add s0,s3,s7
add s0,s3,s7
add s0,s3,s7
add s0,s3,s7
add s0,s3,s7
add s0,s3,s7
...(repeat 10000 times)

Snippet for measurement

Benchmarking with llvm-exegesis: an example
Reporting inconsistencies

8

Measured

Current scheduling data

RISC-V & llvm-exegesis

9

◆ Scheduling class is the smallest unit in a scheduling

model. RISC-V has 2.2x more scheduling classes

than X86

◆ Majority of these classes are designated to RISC-V

Vector Extension (RVV) instructions

◇ RVV instructions are of paramount

importance to performance

◆ Folks from SyntaCore have tried to upstream RISC-V

llvm-exegesis support for scalar instructions

(#89047)

◆ We’re presenting our support for RVV instructions

in llvm-exegesis

https://github.com/llvm/llvm-project/pull/89047

Scheduling properties of RVV

10

vadd v0, v0, v4

vadd v0, v0, v4

RVV Assembly ● Each RVV instruction’s configurations (VTYPE) can be
updated dynamically during runtime

○ E.g. Element type (SEW), register grouping (LMUL),
and number of vector elements (VL)

Scheduling properties of RVV

11

vsetvli a0, a7, e32, m2, tu, mu
vadd v0, v0, v4

vsetvli a0, a7, e64, m4, tu, mu
vadd v0, v0, v4

RVV Assembly ● Each RVV instruction’s configurations (VTYPE) can be
updated dynamically during runtime

○ E.g. Element type (SEW), register grouping (LMUL),
and number of vector elements (VL)

Scheduling properties of RVV

12

vsetvli a0, a7, e32, m2, tu, mu
vadd v0, v0, v4

vsetvli a0, a7, e64, m4, tu, mu
vadd v0, v0, v4

RVV Assembly ● Each RVV instruction’s configurations (VTYPE) can be
updated dynamically during runtime

○ E.g. Element type (SEW), register grouping (LMUL),
and number of vector elements (VL)

● The same instruction might have completely different
latency or inverse throughput under different VTYPE

● Pseudo instructions with VTYPE (e.g. SEW, VL) as
explicit operands

Scheduling properties of RVV

13

vsetvli a0, a7, e32, m2, tu, mu
vadd v0, v0, v4

vsetvli a0, a7, e64, m4, tu, mu
vadd v0, v0, v4

$v0m2 = PseudoVADD_VV_M2 undef $v0m2, $v0m2, $v4m2, $x10 /* vl */, 5 /* e32 */, 0 /* tu, mu */

$v0m4 = PseudoVADD_VV_M4 undef $v0m4, $v0m4, $v4m4, $x10 /* vl */, 6 /* e64 */, 0 /* tu, mu */

Machine IR

RVV Assembly

● Pseudo instructions with VTYPE (e.g. SEW, VL) as
explicit operands

● A LMUL-based pseudo instruction & scheduling class
design

○ Most RVV instructions have varying scheduling
properties in different LMULs

Scheduling properties of RVV

14

vsetvli a0, a7, e32, m2, tu, mu
vadd v0, v0, v4

vsetvli a0, a7, e64, m4, tu, mu
vadd v0, v0, v4

$v0m2 = PseudoVADD_VV_M2 undef $v0m2, $v0m2, $v4m2, $x10 /* vl */, 5 /* e32 */, 0 /* tu, mu */

$v0m4 = PseudoVADD_VV_M4 undef $v0m4, $v0m4, $v4m4, $x10 /* vl */, 6 /* e64 */, 0 /* tu, mu */

Machine IR

RVV Assembly

RVV support in llvm-exegesis
High-level design

15

◆ A custom snippet generator that enumerates every single RVV pseudo opcodes

◇ For each opcode, enumerate all possible (legal) SEW, VL, FRM / VXRM, and

tail/mask policies via the pseudo instruction operands

RVV support in llvm-exegesis
High-level design

16

◆ A custom snippet generator that enumerates every single RVV pseudo opcodes

◇ For each opcode, enumerate all possible (legal) SEW, VL, FRM / VXRM, and

tail/mask policies via the pseudo instruction operands

◆ Run MachineIR Passes on the generated snippets

◇ RISCVInsertVSETVLIPass – insert vsetvli instructions that match the VTYPE

◇ RISCVInsertWriteVXRMPass – insert VXRM update instructions

◇ Custom post-processing Pass – an Exegesis-specific Pass to cleanup some

remaining virtual registers

Generate legal RVV snippets

17

◆ Filtering out illegal VTYPE combinations

◇ Fractional LMULs (e.g. MF2) only support some of the SEW

◇ Instructions that disallow overlapping source / dest register group

◇ Vector crypto (Zvk*) specific rules (e.g. the EGW constraint)

Generate legal RVV snippets

18

◆ Filtering out illegal VTYPE combinations

◇ Fractional LMULs (e.g. MF2) only support some of the SEW

◇ Instructions that disallow overlapping source / dest register group

◇ Vector crypto (Zvk*) specific rules (e.g. the EGW constraint)

◆ The passthru operand in RVV instructions

◇ Most RVV instructions have an additional passthru operand that Exegesis’s serial

snippet generator confuses as an input operand (it’s not)

19

PseudoVADD_VV_MX

Custom RVV
Snippet Generator

RISCVInsertVSETVLPass

RISCVInsertVXRMWritePass

(AsmPrinter)

Allow pseudo opcodes

● Enumerate all possible VTYPE combinations
● Filter out ineligible opcodes

RISC-V Exegesis
Post-process Pass

Lower RVV pseudo instructions

Manually allocate registers for some VSETVL and
WriteFRM instructions

Filtering Rules

Serial Snippets
Post Processing Assign self-aliasing registers for serial

snippets

New component

Existing Pass

Case study: RVV integer slide up / down
Before

20

Old SiFive P470 Scheduling Model

Instructions Latency
(LMUL = 4)

Inverse Throughput
(LMUL = 4)

vslideup.vx
8 cycles 4 cycles

vslidedown.vx

Instructions Old Scheduling class (relevant part)

vslideup.vx
vslidedown.vx

WriteVISlideX_M2/M4/M8

Case study: RVV integer slide up / down
Before

21

Old SiFive P470 Scheduling Model llvm-exegesis Measurements

Instructions Latency
(LMUL = 4)

Inverse Throughput
(LMUL = 4)

Latency
(LMUL = 4)

Inverse Throughput
(LMUL = 4)

vslideup.vx
8 cycles 4 cycles

~12 cycles

vslidedown.vx ~14 cycles

Instructions Old Scheduling class (relevant part)

vslideup.vx
vslidedown.vx

WriteVISlideX_M2/M4/M8

Case study: RVV integer slide up / down
Solution: split the scheduling class

22

Instructions Old Scheduling class (relevant part) New scheduling classes (relevant part)

vslideup.vx
vslidedown.vx

WriteVISlideX_M2/M4/M8
WriteVSlideUpX_M2/M4/M8

WriteVSlideDownX_M2/M4/M8

Old SiFive P470 Scheduling Model llvm-exegesis Measurements

Instructions Latency
(LMUL = 4)

Inverse Throughput
(LMUL = 4)

Latency
(LMUL = 4)

Inverse Throughput
(LMUL = 4)

vslideup.vx
8 cycles 4 cycles

~12 cycles

vslidedown.vx ~14 cycles

● Patch that splitted the scheduling class: 7064e4b
● The new latency & inverse throughput info is part the P400 scheduling model update (7efa068)

https://github.com/llvm/llvm-project/commit/7064e4b1633811da984261fdc585ba4438efe827
https://github.com/llvm/llvm-project/commit/7efa068f7a7ed4f42ba09cce73e8c09bb8b4e8ce

Challenge: llvm-exegesis’s monolithic workflow

23

Benchmark
Generation Assemble Execution &

Measurement

● 32K different RVV snippets for latency

● 131K different RVV snippets for inverse throughput

SlowSlowStart End

Challenge: llvm-exegesis’s monolithic workflow

24

Benchmark
Generation Assemble Execution &

Measurement

Start End

FPGA RTL Simulator SystemC

Pre-silicon Development Environment

~20x
Slower*

*: Compare between the time measured inside FPGA & the actual wall-clock time in the outside world

Solution: Generate snippets ahead of time

25

Execution &
Measurement

FPGARun on normal workstation
(much faster than FPGA)

Benchmark
Generation Assemble

Serialized
Benchmarks

Solution: Generate snippets ahead of time
Naive approach: dump all the benchmark object files

26

Benchmark
Generation Assemble Execution &

Measurement

Serialized
Benchmarks

● Each benchmark contains an object file with size ranging from
9KB to 45 KB (for 10K instructions)

● Take 281MB ~ 5GB on FPGA just to store these benchmarks!

○ Doesn’t scale well if we want to increase the # of
instructions or # of benchmarks

FPGA

Solution: Generate snippets ahead of time
Compression to the rescue!

27

Benchmark
Generation Assemble Execution &

Measurement

Compressed
Benchmarks

● Compress each object file and store it as a base64 string
● Modern compression algorithms favor repeat patterns placed in

close proximity
○ the more of these patterns, the better the compression rate

FPGA

Key Insight

Each benchmark has 10000 (nearly) identical instructions placed side-by-side!

Improved compression efficiency

28

of insts per
benchmark Space saving rate

100 87.09%

1000 91.96%

10000 98.27%

100000 99.79%

1000000 99.97%

Improved llvm-exegesis efficiency
Generating snippets for SiFive P670

29

~2x speedup

Scheduling model improvement
SPEC2006 INT on SiFive P470

30

Limitations & Future Plans

31

◆ RVV memory instructions are currently not supported

◆ Some instructions’ latency / rthroughput depend on input values (e.g. vrgather.vv,

divisions) and we’re not generating the correct values

◆ llvm-exegesis requires Linux, which might be a problem for some (embedded)

processors / microcontrollers

◇ Support other means of measurement in the future, like cycle-accurate

simulators

◆ We would like to upstream our work on top of SyntaCore’s PR. Though the review is

moving slow right now

Summary

32

◆ llvm-exegesis helps us to calibrate the scheduling model for performance-critical RVV

instructions in scale

◆ We created a custom llvm-exegesis pipeline for RVV that delivers good coverages over

all possible vector configurations

◆ We add a new feature into llvm-exegesis that offloads the snippet generation phase. It

gives more flexibility to llvm-exegesis and improves its efficiency by about 2x in our

pre-silicon development testbed

◆ Our work also improves the scheduling models quality and shows at least 2%

performance improvements in some SPEC2006 benchmarks

Summary

33

◆ llvm-exegesis helps us to calibrate the scheduling model for performance-critical RVV

instructions in scale

◆ We created a custom llvm-exegesis pipeline for RVV that delivers good coverages over

all possible vector configurations

◆ We add a new feature into llvm-exegesis that offloads the snippet generation phase. It

gives more flexibility to llvm-exegesis and improves its efficiency by at least 2x in our

pre-silicon development testbed

◆ Our work also improves the scheduling models quality and shows at least 2%

performance improvements in some SPEC2006 benchmarks

Thank You!

