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Highlights
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◆ The importance of llvm-exegesis in performance modeling for RISC-V

◆ The challenges of adding RISC-V Vector (RVV) support into llvm-exegesis 

and our solutions to them

◆ Scaling up llvm-exegesis’s overall efficiencies, especially in pre-silicon 

RISC-V developments



llvm-exegesis and Scheduling Model
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Scheduling 
Modelllvm-exegesis

Calibrate

Instruction 
Schedulers MachineCombiner

MachinePipeliner MCA

● Latency
● Occupancy (inverse throughput)
● HW resources



Before: Calibrate Scheduling Models Manually
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Human
(this is me btw)

Read through the entire 
scheduling model

Compare with 
“ground truth”

● Publicly available documents (e.g. AMD SOG)
● Hand-written microbenchmarks (e.g. Agner)
● Consult HW folks (if possible)

Scheduling 
Model

Slow

Slow



New: Calibrate Scheduling Models Automatically
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Generate 
Code 

Snippets

ComparisonScheduling 
Model

Hardware 
ExecutionGenerate a snippet for 

each instruction opcode
Human

(this is me btw)

llvm-exegesis



Benchmarking with llvm-exegesis: an example
Generated snippet: latency
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---
mode:            latency
key:
  instructions:
    - 'ADD X21 X10 X21'
  config:          ''
  register_initial_values:
    - 'X10=0x0'
    - 'X21=0x0'
cpu_name:        sifive-p670
llvm_triple:     riscv64
min_instructions: 10000
measurements:    []
error:           actual measurements skipped.
...
---

li      a0,0
li      s5,0
add     s5,s5,a0
add     s5,s5,a0
add     s5,s5,a0
add     s5,s5,a0
add     s5,s5,a0
add     s5,s5,a0
...(repeat 10000 times)

Snippet for measurement



---
mode:            inverse_throughput
key:
  instructions:
    - 'ADD X8 X19 X23'
  config:          ''
  register_initial_values:
    - 'X19=0x0'
    - 'X23=0x0'
cpu_name:        sifive-p670
llvm_triple:     riscv64
min_instructions: 10000
measurements:    []
error:           actual measurements skipped.
...
---

Benchmarking with llvm-exegesis: an example
Generated snippet: inverse throughput
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li      s3,0
li      s7,0
add     s0,s3,s7
add     s0,s3,s7
add     s0,s3,s7
add     s0,s3,s7
add     s0,s3,s7
add     s0,s3,s7
...(repeat 10000 times)

Snippet for measurement



Benchmarking with llvm-exegesis: an example
Reporting inconsistencies
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Measured

Current scheduling data



RISC-V & llvm-exegesis
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◆ Scheduling class is the smallest unit in a scheduling 

model. RISC-V has 2.2x more scheduling classes 

than X86

◆ Majority of these classes are designated to RISC-V 

Vector Extension (RVV) instructions

◇ RVV instructions are of paramount 

importance to performance

◆ Folks from SyntaCore have tried to upstream RISC-V 

llvm-exegesis support for scalar instructions 

(#89047)

◆ We’re presenting our support for RVV instructions 

in llvm-exegesis

https://github.com/llvm/llvm-project/pull/89047


Scheduling properties of RVV
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vadd    v0, v0, v4

vadd    v0, v0, v4

RVV Assembly ● Each RVV instruction’s configurations (VTYPE) can be 
updated dynamically during runtime

○ E.g. Element type (SEW), register grouping (LMUL), 
and number of vector elements (VL)



Scheduling properties of RVV
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vsetvli a0, a7, e32, m2, tu, mu
vadd    v0, v0, v4

vsetvli a0, a7, e64, m4, tu, mu
vadd    v0, v0, v4

RVV Assembly ● Each RVV instruction’s configurations (VTYPE) can be 
updated dynamically during runtime

○ E.g. Element type (SEW), register grouping (LMUL), 
and number of vector elements (VL)



Scheduling properties of RVV
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vsetvli a0, a7, e32, m2, tu, mu
vadd    v0, v0, v4

vsetvli a0, a7, e64, m4, tu, mu
vadd    v0, v0, v4

RVV Assembly ● Each RVV instruction’s configurations (VTYPE) can be 
updated dynamically during runtime

○ E.g. Element type (SEW), register grouping (LMUL), 
and number of vector elements (VL)

● The same instruction might have completely different 
latency or inverse throughput under different VTYPE



● Pseudo instructions with VTYPE (e.g. SEW, VL) as 
explicit operands

Scheduling properties of RVV
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vsetvli a0, a7, e32, m2, tu, mu
vadd    v0, v0, v4

vsetvli a0, a7, e64, m4, tu, mu
vadd    v0, v0, v4

$v0m2 = PseudoVADD_VV_M2 undef $v0m2, $v0m2, $v4m2, $x10 /* vl */, 5 /* e32 */, 0 /* tu, mu */

$v0m4 = PseudoVADD_VV_M4 undef $v0m4, $v0m4, $v4m4, $x10 /* vl */, 6 /* e64 */, 0 /* tu, mu */

Machine IR

RVV Assembly



● Pseudo instructions with VTYPE (e.g. SEW, VL) as 
explicit operands

● A LMUL-based pseudo instruction & scheduling class 
design

○ Most RVV instructions have varying scheduling 
properties in different LMULs

Scheduling properties of RVV
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vsetvli a0, a7, e32, m2, tu, mu
vadd    v0, v0, v4

vsetvli a0, a7, e64, m4, tu, mu
vadd    v0, v0, v4

$v0m2 = PseudoVADD_VV_M2 undef $v0m2, $v0m2, $v4m2, $x10 /* vl */, 5 /* e32 */, 0 /* tu, mu */

$v0m4 = PseudoVADD_VV_M4 undef $v0m4, $v0m4, $v4m4, $x10 /* vl */, 6 /* e64 */, 0 /* tu, mu */

Machine IR

RVV Assembly



RVV support in llvm-exegesis
High-level design
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◆ A custom snippet generator that enumerates every single RVV pseudo opcodes

◇ For each opcode, enumerate all possible (legal) SEW, VL, FRM / VXRM, and 

tail/mask policies via the pseudo instruction operands



RVV support in llvm-exegesis
High-level design
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◆ A custom snippet generator that enumerates every single RVV pseudo opcodes

◇ For each opcode, enumerate all possible (legal) SEW, VL, FRM / VXRM, and 

tail/mask policies via the pseudo instruction operands

◆ Run MachineIR Passes on the generated snippets

◇ RISCVInsertVSETVLIPass – insert vsetvli instructions that match the VTYPE

◇ RISCVInsertWriteVXRMPass – insert VXRM update instructions

◇ Custom post-processing Pass – an Exegesis-specific Pass to cleanup some 

remaining virtual registers



Generate legal RVV snippets

17

◆ Filtering out illegal VTYPE combinations

◇ Fractional LMULs (e.g. MF2) only support some of the SEW

◇ Instructions that disallow overlapping source / dest register group

◇ Vector crypto (Zvk*) specific rules (e.g. the EGW constraint)



Generate legal RVV snippets
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◆ Filtering out illegal VTYPE combinations

◇ Fractional LMULs (e.g. MF2) only support some of the SEW

◇ Instructions that disallow overlapping source / dest register group

◇ Vector crypto (Zvk*) specific rules (e.g. the EGW constraint)

◆ The passthru operand in RVV instructions

◇ Most RVV instructions have an additional passthru operand that Exegesis’s serial 

snippet generator confuses as an input operand (it’s not)
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PseudoVADD_VV_MX

Custom RVV
Snippet Generator

RISCVInsertVSETVLPass

RISCVInsertVXRMWritePass

(AsmPrinter)

Allow pseudo opcodes

● Enumerate all possible VTYPE combinations 
● Filter out ineligible opcodes 

RISC-V Exegesis 
Post-process Pass

Lower RVV pseudo instructions

Manually allocate registers for some VSETVL and 
WriteFRM instructions

Filtering Rules

Serial Snippets 
Post Processing Assign self-aliasing registers for serial 

snippets

New component

Existing Pass



Case study: RVV integer slide up / down 
Before
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Old SiFive P470 Scheduling Model

Instructions Latency
(LMUL = 4)

Inverse Throughput
(LMUL = 4)

vslideup.vx
8 cycles 4 cycles

vslidedown.vx

Instructions Old Scheduling class (relevant part)

vslideup.vx
vslidedown.vx

WriteVISlideX_M2/M4/M8



Case study: RVV integer slide up / down 
Before
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Old SiFive P470 Scheduling Model llvm-exegesis Measurements

Instructions Latency
(LMUL = 4)

Inverse Throughput
(LMUL = 4)

Latency
(LMUL = 4)

Inverse Throughput
(LMUL = 4)

vslideup.vx
8 cycles 4 cycles

~12 cycles

vslidedown.vx ~14 cycles

Instructions Old Scheduling class (relevant part)

vslideup.vx
vslidedown.vx

WriteVISlideX_M2/M4/M8



Case study: RVV integer slide up / down 
Solution: split the scheduling class
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Instructions Old Scheduling class (relevant part) New scheduling classes (relevant part)

vslideup.vx
vslidedown.vx

WriteVISlideX_M2/M4/M8
WriteVSlideUpX_M2/M4/M8

WriteVSlideDownX_M2/M4/M8

Old SiFive P470 Scheduling Model llvm-exegesis Measurements

Instructions Latency
(LMUL = 4)

Inverse Throughput
(LMUL = 4)

Latency
(LMUL = 4)

Inverse Throughput
(LMUL = 4)

vslideup.vx
8 cycles 4 cycles

~12 cycles

vslidedown.vx ~14 cycles

● Patch that splitted the scheduling class: 7064e4b
● The new latency & inverse throughput info is part the P400 scheduling model update (7efa068)

https://github.com/llvm/llvm-project/commit/7064e4b1633811da984261fdc585ba4438efe827
https://github.com/llvm/llvm-project/commit/7efa068f7a7ed4f42ba09cce73e8c09bb8b4e8ce


Challenge: llvm-exegesis’s monolithic workflow 
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Benchmark 
Generation Assemble Execution & 

Measurement

● 32K different RVV snippets for latency

● 131K different RVV snippets for inverse throughput

SlowSlowStart End



Challenge: llvm-exegesis’s monolithic workflow 
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Benchmark 
Generation Assemble Execution & 

Measurement

Start End

FPGA RTL Simulator SystemC

Pre-silicon Development Environment

~20x 
Slower*

*: Compare between the time measured inside FPGA & the actual wall-clock time in the outside world



Solution: Generate snippets ahead of time
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Execution & 
Measurement

FPGARun on normal workstation 
(much faster than FPGA)

Benchmark 
Generation Assemble

Serialized 
Benchmarks



Solution: Generate snippets ahead of time
Naive approach: dump all the benchmark object files
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Benchmark 
Generation Assemble Execution & 

Measurement

Serialized 
Benchmarks

● Each benchmark contains an object file with size ranging from 
9KB to 45 KB (for 10K instructions)

● Take 281MB ~ 5GB on FPGA just to store these benchmarks!

○ Doesn’t scale well if we want to increase the # of 
instructions or # of benchmarks

FPGA



Solution: Generate snippets ahead of time
Compression to the rescue!
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Benchmark 
Generation Assemble Execution & 

Measurement

Compressed 
Benchmarks

● Compress each object file and store it as a base64 string
● Modern compression algorithms favor repeat patterns placed in 

close proximity 
○ the more of these patterns, the better the compression rate

FPGA

Key Insight

Each benchmark has 10000 (nearly) identical instructions placed side-by-side!



Improved compression efficiency
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# of insts per 
benchmark Space saving rate

100 87.09%

1000 91.96%

10000 98.27%

100000 99.79%

1000000 99.97%



Improved llvm-exegesis efficiency
Generating snippets for SiFive P670
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~2x speedup



Scheduling model improvement
SPEC2006 INT on SiFive P470
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Limitations & Future Plans
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◆ RVV memory instructions are currently not supported

◆ Some instructions’ latency / rthroughput depend on input values (e.g. vrgather.vv, 

divisions) and we’re not generating the correct values

◆ llvm-exegesis requires Linux, which might be a problem for some (embedded) 

processors / microcontrollers

◇ Support other means of measurement in the future, like cycle-accurate 

simulators

◆ We would like to upstream our work on top of SyntaCore’s PR. Though the review is 

moving slow right now



Summary
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◆ llvm-exegesis helps us to calibrate the scheduling model for performance-critical RVV 

instructions in scale

◆ We created a custom llvm-exegesis pipeline for RVV that delivers good coverages over 

all possible vector configurations

◆ We add a new feature into llvm-exegesis that offloads the snippet generation phase. It 

gives more flexibility to llvm-exegesis and improves its efficiency by about 2x in our 

pre-silicon development testbed

◆ Our work also improves the scheduling models quality and shows at least 2% 

performance improvements in some SPEC2006 benchmarks



Summary
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◆ llvm-exegesis helps us to calibrate the scheduling model for performance-critical RVV 

instructions in scale

◆ We created a custom llvm-exegesis pipeline for RVV that delivers good coverages over 

all possible vector configurations

◆ We add a new feature into llvm-exegesis that offloads the snippet generation phase. It 

gives more flexibility to llvm-exegesis and improves its efficiency by at least 2x in our 

pre-silicon development testbed

◆ Our work also improves the scheduling models quality and shows at least 2% 

performance improvements in some SPEC2006 benchmarks

Thank You!


